Computing Bifurcation Diagrams for Large Nonlinear Variational Problems

1987 ◽  
pp. 114-137 ◽  
Author(s):  
Helmut Jarausch ◽  
Wolfgang Mackens
Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 71 ◽  
Author(s):  
Valerio Faraoni

Several classic one-dimensional problems of variational calculus originating in non-relativistic particle mechanics have solutions that are analogues of spatially homogeneous and isotropic universes. They are ruled by an equation which is formally a Friedmann equation for a suitable cosmic fluid. These problems are revisited and their cosmic analogues are pointed out. Some correspond to the main solutions of cosmology, while others are analogous to exotic cosmologies with phantom fluids and finite future singularities.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 474 ◽  
Author(s):  
Lazaros Moysis ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jesus M. Munoz-Pacheco ◽  
Jacques Kengne ◽  
...  

A modification of the classic logistic map is proposed, using fuzzy triangular numbers. The resulting map is analysed through its Lyapunov exponent (LE) and bifurcation diagrams. It shows higher complexity compared to the classic logistic map and showcases phenomena, like antimonotonicity and crisis. The map is then applied to the problem of pseudo random bit generation, using a simple rule to generate the bit sequence. The resulting random bit generator (RBG) successfully passes the National Institute of Standards and Technology (NIST) statistical tests, and it is then successfully applied to the problem of image encryption.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 876
Author(s):  
Wieslaw Marszalek ◽  
Jan Sadecki ◽  
Maciej Walczak

Two types of bifurcation diagrams of cytosolic calcium nonlinear oscillatory systems are presented in rectangular areas determined by two slowly varying parameters. Verification of the periodic dynamics in the two-parameter areas requires solving the underlying model a few hundred thousand or a few million times, depending on the assumed resolution of the desired diagrams (color bifurcation figures). One type of diagram shows period-n oscillations, that is, periodic oscillations having n maximum values in one period. The second type of diagram shows frequency distributions in the rectangular areas. Each of those types of diagrams gives different information regarding the analyzed autonomous systems and they complement each other. In some parts of the considered rectangular areas, the analyzed systems may exhibit non-periodic steady-state solutions, i.e., constant (equilibrium points), oscillatory chaotic or unstable solutions. The identification process distinguishes the later types from the former one (periodic). Our bifurcation diagrams complement other possible two-parameter diagrams one may create for the same autonomous systems, for example, the diagrams of Lyapunov exponents, Ls diagrams for mixed-mode oscillations or the 0–1 test for chaos and sample entropy diagrams. Computing our two-parameter bifurcation diagrams in practice and determining the areas of periodicity is based on using an appropriate numerical solver of the underlying mathematical model (system of differential equations) with an adaptive (or constant) step-size of integration, using parallel computations. The case presented in this paper is illustrated by the diagrams for an autonomous dynamical model for cytosolic calcium oscillations, an interesting nonlinear model with three dynamical variables, sixteen parameters and various nonlinear terms of polynomial and rational types. The identified frequency of oscillations may increase or decrease a few hundred times within the assumed range of parameters, which is a rather unusual property. Such a dynamical model of cytosolic calcium oscillations, with mitochondria included, is an important model in which control of the basic functions of cells is achieved through the Ca2+ signal regulation.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


2021 ◽  
Vol 11 (15) ◽  
pp. 6955
Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

This study investigates the use of the differential transform method (DTM) for integrating the Rössler system of the fractional order. Preliminary studies of the integer-order Rössler system, with reference to other well-established integration methods, made it possible to assess the quality of the method and to determine optimal parameter values that should be used when integrating a system with different dynamic characteristics. Bifurcation diagrams obtained for the Rössler fractional system show that, compared to the RK4 scheme-based integration, the DTM results are more resistant to changes in the fractionality of the system.


1989 ◽  
Vol 108 (4) ◽  
pp. 247-265 ◽  
Author(s):  
Takashi Nishimura ◽  
Takuo Fukuda ◽  
Kenji Aoki

1998 ◽  
Vol 2 (3) ◽  
pp. 167-172
Author(s):  
I. V. Feldstein ◽  
N. N. Kuzmin

The paper presents an approach to the simulation of friction interaction. The model does not use any physical descriptions of the processes in the system, but it has simple physical interpretation. It is based on one qualitative experimental result – the value of first Lyapunov exponent drops with normal load. It is shown that the logistic map could be considered as the simplest model of continuous contact. The generalization of the model (which takes into account the discreteness of the real contact) gives results very similar to the experimental ones. It is in the form of a dynamic ensemble with variable structure (DEVS), which has some interesting properties – particularly bifurcation diagrams.


2013 ◽  
Vol 11 (02) ◽  
pp. 1350017 ◽  
Author(s):  
GÜNTHER HÖRMANN ◽  
SANJA KONJIK ◽  
LJUBICA OPARNICA

We study the initial-boundary value problem for an Euler–Bernoulli beam model with discontinuous bending stiffness laying on a viscoelastic foundation and subjected to an axial force and an external load both of Dirac-type. The corresponding model equation is a fourth-order partial differential equation and involves discontinuous and distributional coefficients as well as a distributional right-hand side. Moreover the viscoelastic foundation is of Zener-type and described by a fractional differential equation with respect to time. We show how functional analytic methods for abstract variational problems can be applied in combination with regularization techniques to prove existence and uniqueness of generalized solutions.


Sign in / Sign up

Export Citation Format

Share Document