Genetically Engineered Antitumor Monoclonal Antibodies

1995 ◽  
pp. 393-432 ◽  
Author(s):  
S. V. S. Kashmiri ◽  
Patricia Horan Hand
2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Xuyao Jiao ◽  
Sarah Smith ◽  
Gabrielle Stack ◽  
Qi Liang ◽  
Allan Bradley ◽  
...  

ABSTRACT Typhoid toxin is a virulence factor of Salmonella enterica serovar Typhi, the causative agent of typhoid fever, and is thought to be responsible for the symptoms of severe disease. This toxin has a unique A2B5 architecture with two active subunits, the ADP ribosyl transferase PltA and the DNase CdtB, linked to a pentameric B subunit, which is alternatively made of PltB or PltC. Here, we describe the generation and characterization of typhoid toxin-neutralizing human monoclonal antibodies by immunizing genetically engineered mice that have a full set of human immunoglobulin variable region genes. We identified several monoclonal antibodies with strong in vitro and in vivo toxin-neutralizing activity and different mechanisms of toxin neutralization. These antibodies could serve as the basis for the development of novel therapeutic strategies against typhoid fever.


1999 ◽  
Vol 37 (12) ◽  
pp. 3986-3989 ◽  
Author(s):  
Navin Patel ◽  
Lynn Kauffmann ◽  
Geri Baniewicz ◽  
Michael Forman ◽  
Martin Evans ◽  
...  

The ELVIS HSV Id test kit (an enzyme-linked virus-inducible system) (Diagnostic Hybrids, Inc.) uses genetically engineered BHK cells to produce a detectable enzyme, beta-galactosidase, upon infection with either herpes simplex virus (HSV) type 1 (HSV-1) or HSV-2. Twenty six ELVIS-positive clinical specimens were selected for study by PCR and with monoclonal antibodies because they were originally low-titer HSV-positive specimens by ELVIS but HSV antibody nonreactive upon follow-up staining of the ELVIS monolayer. Twenty-one of 26 specimens were frozen, thawed, and retested with ELVIS without removing the cellular debris from the specimen; 18 were ELVIS positive and 3 were ELVIS negative on retesting. A typing result was provided upon retesting for 14 of 18 ELVIS-positive specimens (11 were HSV-1 and 3 were HSV-2) with HSV-specific monoclonal antibodies; no antibody signal was observed for 4 of 18 ELVIS-positive specimens. Sixteen of 26 specimens were subjected to blinded PCR analysis with two different primer sets, including all those that were repeat tested with ELVIS without success and those that had insufficient quantity for repeat testing. All 16 specimens analyzed were PCR positive with primer set 1; 15 of 16 were also positive with primer set 2, with the HSV type identified for all specimens (7 were HSV-1 and 8 were HSV-2). These results indicate that the original ELVIS result with these low-titer specimens was correct and further confirm the sensitivity and specificity of ELVIS HSV Id as a rapid, cell culture-based kit for the detection of HSV.


Blood ◽  
1992 ◽  
Vol 80 (9) ◽  
pp. 2159-2171 ◽  
Author(s):  
MA Blajchman ◽  
RC Austin ◽  
F Fernandez-Rachubinski ◽  
WP Sheffield

Abstract Figures 1 and 4 summarize the various AT mutations that have been described. The molecular elucidation, over the past decade, of the various AT deficiency types has provided important new insights into functional-structural relationships of AT. This knowledge, together with data provided by monoclonal antibodies and x-ray crystallographic studies of related molecules, has provided important new insights as to how the AT molecule functions in vivo. Finally, such knowledge might, in the foreseeable future, lead to the production of AT molecules that are specifically genetically engineered to be of use in a variety of clinical situations.


Blood ◽  
1992 ◽  
Vol 80 (9) ◽  
pp. 2159-2171 ◽  
Author(s):  
MA Blajchman ◽  
RC Austin ◽  
F Fernandez-Rachubinski ◽  
WP Sheffield

Figures 1 and 4 summarize the various AT mutations that have been described. The molecular elucidation, over the past decade, of the various AT deficiency types has provided important new insights into functional-structural relationships of AT. This knowledge, together with data provided by monoclonal antibodies and x-ray crystallographic studies of related molecules, has provided important new insights as to how the AT molecule functions in vivo. Finally, such knowledge might, in the foreseeable future, lead to the production of AT molecules that are specifically genetically engineered to be of use in a variety of clinical situations.


Sign in / Sign up

Export Citation Format

Share Document