A Method of Reducing the SO2 Emission from Power Boilers

Author(s):  
Jan Jędrusik ◽  
Eugeniusz Kalinowski ◽  
Maria Jędrusik
Keyword(s):  
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Min He ◽  
Junhui Chen ◽  
Yuming He ◽  
Yuan Li ◽  
Qichao Long ◽  
...  

As one of the most populated regions in China, Sichuan province had been suffering from deteriorated air quality due to the dramatic growth of economy and vehicles in recent years. To deal with the increasingly serious air quality problem, Sichuan government agencies had made great efforts to formulate various control measures and policies during the past decade. In order to better understand the emission control progress in recent years and to guide further control policy formulation, the emission trends and source contribution characteristics of SO2, NOX, PM10 and PM2.5 from 2013 to 2017 were characterized by using emission factor approach in this study. The results indicated that SO2 emission decreased rapidly during 2013–2017 with total emission decreased by 52%. NOX emission decreased during 2013–2015 but started to increase slightly afterward. PM10 and PM2.5 emissions went down consistently during the study period, decreased by 26% and 25%, respectively. In summary, the contribution of power plants kept decreasing, while contribution of industrial combustion remained steady in the past 5 years. The contribution of industrial processes increased for SO2 emission, and decreased slightly for NOX, PM10 and PM2.5 emissions. The on-road mobile sources were the largest emission contributor for NOX, accounting for about 32–40%, and its contribution increased during 2013–2015 and then decreased. It was worth mentioning that nonroad mobile sources and natural gas fired boilers were becoming important NOX contributors in Sichuan. Fugitive dust were the key emission sources for PM10 and PM2.5, and the contribution kept increasing in the study period. Comparison results with other inventories, satellite data and ground observations indicated that emission trends developed in this research were relatively credible.


2021 ◽  
Vol 66 ◽  
pp. 102657
Author(s):  
Laijun Zhao ◽  
Lingfeng Yuan ◽  
Yong Yang ◽  
Jian Xue ◽  
Chenchen Wang

2011 ◽  
Vol 11 (9) ◽  
pp. 4533-4546 ◽  
Author(s):  
P. Tulet ◽  
N. Villeneuve

Abstract. In April 2007, the Piton de la Fournaise volcano (Réunion island) entered into its biggest eruption recorded in the last century. Due to the absence of a sensors network in the vicinity of the volcano, an estimation of degassing during the paroxysmal phase of the event has not been performed. Nevertheless, the SO2 plume and aerosols have been observed by the OMI and CALIOP space sensors, respectively. The mesoscale chemical model MesoNH-C simulates the observed bulk mass of SO2 and the general shape of the SO2 plume spreading over the Indian Ocean. Moreover, an analysis of the SO2 plume budget estimates a total SO2 release of 230 kt, among of which 60 kt have been transformed into H2SO4. 27 kt of SO2 and 21 kt of H2SO4 have been deposited at the surface by dry deposition. With this top down approach, the temporal evolution of the SO2 emission has been estimated during the most active period of the eruption. The peak of degassing was estimated at 1800 kg s−1 in the morning of 6~April. The temporal evolution of SO2 emission presented here can also be used for local studies.


2019 ◽  
Vol 7 ◽  
Author(s):  
Thomas Charles Wilkes ◽  
Tom David Pering ◽  
Andrew John Samuel McGonigle ◽  
Jon Raffe Willmott ◽  
Robert Bryant ◽  
...  

2017 ◽  
Vol 31 (10) ◽  
pp. 11481-11488 ◽  
Author(s):  
Yan Dong ◽  
Yuzhong Li ◽  
Liqiang Zhang ◽  
Lin Cui ◽  
Bo Zhang ◽  
...  

2010 ◽  
Vol 8 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Hanik Humaida

The SO2 is one of the volcanic gases that can use as indicator of volcano activity. Commonly, SO2 emission is measured by COSPEC (Correlation Spectroscopy). This equipment has several disadvantages; such as heavy, big in size, difficulty in finding spare part, and expensive. DOAS (Differential Optical Absorption Spectroscopy) is a new method for SO2 emission measurement that has advantages compares to the COSPEC. Recently, this method has been developed. The SO2 gas emission measurement of Gunung Merapi by DOAS has been carried out at Kaliadem, and also by COSPEC method as comparation. The differences of the measurement result of both methods are not significant. However, the differences of minimum and maximum result of DOAS method are smaller than that of the COSPEC. It has range between 51 ton/day and 87 ton/day for DOAS and 87 ton/day and 201 ton/day for COSPEC. The measurement of SO2 gas emission evaluated with the seismicity data especially the rockfall showed the presence of the positive correlation. It may cause the gas pressure in the subsurface influencing instability of 2006 eruption lava.   Keywords: SO2 gas, Merapi, DOAS, COSPEC


Sign in / Sign up

Export Citation Format

Share Document