Application of Tissue Culture Propagation to Woody Plants

Author(s):  
Richard H. Zimmerman
In Vitro ◽  
1976 ◽  
Vol 12 (12) ◽  
pp. 797-813 ◽  
Author(s):  
Lynn R. Miller ◽  
Toshio Murashige

2020 ◽  
Vol 12 (560) ◽  
pp. eaba3312
Author(s):  
Marti Cabanes-Creus ◽  
Claus V. Hallwirth ◽  
Adrian Westhaus ◽  
Boaz H. Ng ◽  
Sophia H.Y. Liao ◽  
...  

Recent clinical successes in gene therapy applications have intensified interest in using adeno-associated viruses (AAVs) as vectors for therapeutic gene delivery. Although prototypical AAV2 shows robust in vitro transduction of human hepatocyte–derived cell lines, it has not translated into an effective vector for liver-directed gene therapy in vivo. This is consistent with observations made in Fah−/−/Rag2−/−/Il2rg−/− (FRG) mice with humanized livers, showing that AAV2 functions poorly in this xenograft model. Here, we derived naturally hepatotropic AAV capsid sequences from primary human liver samples. We demonstrated that capsid mutations, likely acquired as an unintentional consequence of tissue culture propagation, attenuated the intrinsic human hepatic tropism of natural AAV2 and related human liver AAV isolates. These mutations resulted in amino acid changes that increased binding to heparan sulfate proteoglycan (HSPG), which has been regarded as the primary cellular receptor mediating AAV2 infection of human hepatocytes. Propagation of natural AAV variants in vitro showed tissue culture adaptation with resulting loss of tropism for human hepatocytes. In vivo readaptation of the prototypical AAV2 in FRG mice with a humanized liver resulted in restoration of the intrinsic hepatic tropism of AAV2 through decreased binding to HSPG. Our results challenge the notion that high affinity for HSPG is essential for AAV2 entry into human hepatocytes and suggest that natural AAV capsids of human liver origin are likely to be more effective for liver-targeted gene therapy applications than culture-adapted AAV2.


Plant Disease ◽  
1997 ◽  
Vol 81 (8) ◽  
pp. 905-910 ◽  
Author(s):  
Heather J. Scheck ◽  
Marilyn L. Canfield ◽  
Jay W. Pscheidt ◽  
Larry W. Moore

Losses from diseases caused by Pseudomonas syringae pv. syringae occur on a large number of deciduous woody plants in commercial nurseries in the Pacific Northwest. Bioassays for pathogenicity are one step in the identification of P. syringae pv. syringae and are usually performed on the host of isolation; however, woody plants can take months to develop symptoms. A bioassay with highly susceptible lilac (Syringa vulgaris ‘Sensation’) tissue culture plantlets evaluated pathogenicity in strains of P. syringae pv. syringae isolated from 25 species of deciduous woody plants. DNA colony hybridization with the syrB probe for a syringomycin synthetase gene and the syrD probe for a syringomycin export gene was also evaluated as a method for identifying pathogens. Of 552 strains provisionally identified as P. syringae pv. syringae, 59% were pathogenic in the bioassay and hybridized with the syr probes, while 19% were non-pathogenic and did not hybridize with the syr probes, giving 78% agreement between the two methods. Nine percent of strains were pathogenic in the bioassay but did not hybridize with the syr probes, and 13% were not pathogenic in the bioassay but did hybridize with the syr probes. These methods detected pathogenic strains of P. syringae pv. syringae isolated from diverse woody plants in 5 to 16 days.


Sign in / Sign up

Export Citation Format

Share Document