Uncertainties in the Analysis of M X-Ray Lines of the Rare-Earth Elements

1991 ◽  
pp. 223-249 ◽  
Author(s):  
J. L. Lábár ◽  
C. J. Salter
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
J. Ochoa ◽  
E. Monteblanco ◽  
L. Cerpa ◽  
A. Gutarra-Espinoza ◽  
L. Avilés-Félix

AbstractA recently discovered the rare-earth-rich site in Capacsaya, located at 123 km northwest of Cusco, at the south of Peru, contains significant quantities of light and heavy rare-earth elements such as neodymium, lanthanum, cerium, europium, and yttrium. This work reports the identification of rare-earth elements and their associated minerals using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Five (5) samples extracted from different locations at the Capacsaya site were characterized and identified K-feldspar as the mineral associated with the rare-earth elements in a representative sample with a high concentration of lanthanum and cerium. The results showed rare-earth elements contained within the mineral phase monazite, being cerium the dominant element in the phase (La, Ce, Nd)PO$$_4$$ 4 . Finally, through the electrostatic separation process we demonstrate that it was possible to achieve an efficient separation of the K-feldspar phase in the particle size range 75–150 $$\upmu$$ μ m.


2022 ◽  
Author(s):  
Yong Li ◽  
Zhou Jiang ◽  
Haidong Yu ◽  
Xuebin Zhou ◽  
Peng Yi

Abstract Rare earth-modified graphene oxide (RE-M-GO) materials were successfully prepared by infiltration and heating modifier method. The morphology and phase structure of RE-M-GO were characterized by scanning electron microscopy(SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectrometer(EDS). The changes of the chemical structure were indicated by Fourier transform infrared (FTIR). X-ray photoelectron spectroscopy(XPS) was used to study the chemical state of the surface elements of graphene oxide which showed that the rare earth elements were added to the graphene oxide functional groups through the coordination reaction. Additionally, the findings concluded that the effect of modification by Ce is more obvious than La elements and the RE-M-GO materials prepared by the heating modifier method had better dispersibility than infiltration. With activating effect, the rare earth elements grafting to graphene oxide will contribute to its combination with other materials.


1997 ◽  
Vol 52 (5) ◽  
pp. 560-564 ◽  
Author(s):  
Andre T. Nientiedt ◽  
Wolfgang Jeitschko ◽  
Peter G. Pollmeier ◽  
Markus Brylak

Abstract The 24 title compounds were prepared in well crystallized form by reaction of the rare earth elements (or uranium, respectively), manganese, the pnictide components, and MnO2 in a NaCl/KCl flux. They crystallize with the tetragonal ZrCuSiAs type structure (P4/nmm, Z = 2), which has been refined from single-crystal X-ray data of NdMnPO (a = 398.9(1), c = 867.4(1) pm, R = 0.026), NdMnAsO (a = 404,9(2), c = 889.3(4) pm, R = 0.025), and NdMnSbO (a = 416.5(1), c = 946.2(2) pm, R = 0.021) for 107, 190, and 124 structure factors, respectively, and 11 variable parameters each. Chemical bonding in these compounds is briefly discussed.


1992 ◽  
Vol 163 (3) ◽  
pp. 188-192
Author(s):  
B.D. Shrivastava ◽  
G.D. Gupta ◽  
S.K. Joshi

Sign in / Sign up

Export Citation Format

Share Document