Gap States in Phosphorus-Doped a-Si:H

Author(s):  
Kazunobu Tanaka ◽  
Hideyo Okushi ◽  
Satoshi Yamasaki
Keyword(s):  
1985 ◽  
Vol 2 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Du Yongchang ◽  
Zhang Yufeng ◽  
Yang Datong ◽  
Zhang Guanghua ◽  
Han Ruqi

1987 ◽  
Vol 97-98 ◽  
pp. 815-818
Author(s):  
Š. Lányi ◽  
V. Nádaždy ◽  
J. Kočka
Keyword(s):  

Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Author(s):  
Meric Firat ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Maria Recaman Payo ◽  
Filip Duerinckx ◽  
Rajiv Sharma ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 551
Author(s):  
Petros-Panagis Filippatos ◽  
Nikolaos Kelaidis ◽  
Maria Vasilopoulou ◽  
Dimitris Davazoglou ◽  
Alexander Chroneos

In the present study, we performed density functional theory calculations (DFT) to investigate structural changes and their impact on the electronic properties in halogen (F, Cl, Br, and I) doped tin oxide (SnO2). We performed calculations for atoms intercalated either at interstitial or substitutional positions and then calculated the electronic structure and the optical properties of the doped SnO2. In all cases, a reduction in the bandgap value was evident, while gap states were also formed. Furthermore, when we insert these dopants in interstitial and substitutional positions, they all constitute a single acceptor and donor, respectively. This can also be seen in the density of states through the formation of gap states just above the valence band or below the conduction band, respectively. These gap states may contribute to significant changes in the optical and electronic properties of SnO2, thus affecting the metal oxide’s suitability for photovoltaics and photocatalytic devices. In particular, we found that iodine (I) doping of SnO2 induces a high dielectric constant while also reducing the oxide’s bandgap, making it more efficient for light-harvesting applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12682-12686
Author(s):  
Yuanjin Li ◽  
Shuhui Wang ◽  
Jin Wu ◽  
Qiuyan Wang ◽  
Changqiu Ma ◽  
...  

Porous phosphorus-doped g-C3N4 (PCNT) has intensive oxygen activation ability to generate superoxide radicals, and can efficiently catalyze synthesis of benzoin from benzyl alcohol, with conversion rate and selectivity near to 100%.


Sign in / Sign up

Export Citation Format

Share Document