In Vitro Screening of Antifungal Compounds Able to Counteract Biofilm Development

Author(s):  
Marion Girardot ◽  
Christine Imbert
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 506b-506
Author(s):  
Carol D. Robacker ◽  
S.K. Braman

Azalea lace bug (Stephanitis pyrioides) is the most serious pest on azalea. Results of laboratory bioassays and field evaluations of 17 deciduous azalea taxa have identified three resistant taxa: R. canescens, R. periclymenoides, and R. prunifolium. Highly susceptible taxa are `Buttercup', `My Mary', R. oblongifolium, and the evergreen cultivar `Delaware Valley White'. To determine whether in vitro techniques would have potential value in screening or selecting for resistance, or for the identification of morphological or chemical factors related to resistance, an in-vitro screening assay was developed. In-vitro shoot proliferation was obtained using the medium and procedures of Economou and Read (1984). Shoots used in the bioassays were grown in culture tubes. Two assays were developed: one for nymphs and one for adult lace bugs. To assay for resistance to nymphs, `Delaware Valley White' leaves containing lace bug eggs were disinfested with 70% alcohol and 20% commercial bleach, and incubated in sterile petri plates with moistened filter paper until the nymphs hatched. Five nymphs were placed in each culture tube, and cultures were incubated for about 2 weeks, or until adults were observed. To assay for resistance to adults, five female lace bugs were placed in each culture tube and allowed to feed for 5 days. Data collected on survival and leaf damage was generally supportive of laboratory bioassays and field results. Adult lace bugs had a low rate of survival on resistant taxa. Survival of nymphs was somewhat reduced on resistant taxa.


2013 ◽  
Vol 17 (2) ◽  
pp. 162-175 ◽  
Author(s):  
Carmen Limban ◽  
Alexandru Mihai Grumezescu ◽  
Mariana Chirea ◽  
Lilia Matei ◽  
Mariana Carmen Chifiriuc

Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Matías Olivera ◽  
Ninoska Delgado ◽  
Fabiola Cádiz ◽  
Natalia Riquelme ◽  
Iván Montenegro ◽  
...  

Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05–0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.


2021 ◽  
Vol 9 (2) ◽  
pp. 450
Author(s):  
Maigualida Cuenca ◽  
María Carmen Sánchez ◽  
Pedro Diz ◽  
Lucía Martínez-Lamas ◽  
Maximiliano Álvarez ◽  
...  

The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.


2003 ◽  
Vol 47 (8) ◽  
pp. 2685-2687 ◽  
Author(s):  
Luiz E. Bermudez ◽  
Robert Reynolds ◽  
Peter Kolonoski ◽  
Pricilla Aralar ◽  
Clark B. Inderlied ◽  
...  

ABSTRACT In vitro screening of thiacetazone derivatives indicated that two derivatives, SRI-286 and SRI-224, inhibited a panel of 25 Mycobacterium avium complex (MAC) isolates at concentrations of 2 μg/ml or lower. In mice, SRI-224 and thiacetazone had no significant activity against the MAC in livers and spleens, but treatment with SRI-286 resulted in significant reduction of bacterial loads in livers and spleens. A combination of SRI-286 and moxifloxacin was significantly more active than single drug regimens in liver and spleen.


2017 ◽  
Vol 32 (5) ◽  
pp. 544-551 ◽  
Author(s):  
Roberta Tardugno ◽  
Federica Pellati ◽  
Ramona Iseppi ◽  
Moreno Bondi ◽  
Giacomo Bruzzesi ◽  
...  

2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


Sign in / Sign up

Export Citation Format

Share Document