Automated Image Analysis for Diameters and Branching Points of Cerebral Penetrating Arteries and Veins Captured with Two-Photon Microscopy

Author(s):  
Takuma Sugashi ◽  
Kouichi Yoshihara ◽  
Hiroshi Kawaguchi ◽  
Hiroyuki Takuwa ◽  
Hiroshi Ito ◽  
...  
Development ◽  
2022 ◽  
Author(s):  
E. C. Kugler ◽  
J. Frost ◽  
V. Silva ◽  
K. Plant ◽  
K. Chhabria ◽  
...  

Zebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification “ZVQ”. It provides the first landmark- or object-based vascular inter-sample registration of the zebrafish cerebral vasculature, producing Population Average Maps allowing rapid assessment of intra- and inter-group vascular anatomy. ZVQ also extracts a range of quantitative vascular parameters from a user-specified Region of Interest including volume, surface area, density, branching points, length, radius, and complexity. Application of ZVQ to thirteen experimental conditions, including embryonic development, pharmacological manipulations and morpholino induced gene knockdown, shows ZVQ is robust, allows extraction of biologically relevant information and quantification of vascular alteration, and can provide novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface, and workflow documentation are provided. Together, ZVQ provides the first open-source quantitative approach to assess the 3D cerebrovascular architecture in zebrafish.


2020 ◽  
Author(s):  
E. C. Kugler ◽  
J. Frost ◽  
V. Silva ◽  
K. Plant ◽  
K. Chhabria ◽  
...  

AbstractZebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into vascular development in vivo and 3D. However, robust quantification of the zebrafish cerebral vasculature in 3D remains a challenge, and would be essential to describe the vascular architecture. Here, we report an image analysis pipeline that allows 3D quantification of the total or regional zebrafish brain vasculature. This is achieved by landmark- or object-based inter-sample registration and extraction of quantitative parameters including vascular volume, surface area, density, branching points, length, radius, and complexity. Application of our analysis pipeline to a range of sixteen genetic or pharmacological manipulations shows that our quantification approach is robust, allows extraction of biologically relevant information, and provides novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface, and workflow documentation are provided. Together, we present the first 3D quantification approach to assess the whole 3D cerebrovascular architecture in zebrafish.


Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Author(s):  
F. A. Heckman ◽  
E. Redman ◽  
J.E. Connolly

In our initial publication on this subject1) we reported results demonstrating that contrast is the most important factor in producing the high image quality required for reliable image analysis. We also listed the factors which enhance contrast in order of the experimentally determined magnitude of their effect. The two most powerful factors affecting image contrast attainable with sheet film are beam intensity and KV. At that time we had only qualitative evidence for the ranking of enhancing factors. Later we carried out the densitometric measurements which led to the results outlined below.Meaningful evaluations of the cause-effect relationships among the considerable number of variables in preparing EM negatives depend on doing things in a systematic way, varying only one parameter at a time. Unless otherwise noted, we adhered to the following procedure evolved during our comprehensive study:Philips EM-300; 30μ objective aperature; magnification 7000- 12000X, exposure time 1 second, anti-contamination device operating.


Author(s):  
P. Hagemann

The use of computers in the analytical electron microscopy today shows three different trends (1) automated image analysis with dedicated computer systems, (2) instrument control by microprocessors and (3) data acquisition and processing e.g. X-ray or EEL Spectroscopy.While image analysis in the T.E.M. usually needs a television chain to get a sequential transmission suitable as computer input, the STEM system already has this necessary facility. For the EM400T-STEM system therefore an interface was developed, that allows external control of the beam deflection in TEM as well as the control of the STEM probe and video signal/beam brightness on the STEM screen.The interface sends and receives analogue signals so that the transmission rate is determined by the convertors in the actual computer periphery.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julian Bär ◽  
Mathilde Boumasmoud ◽  
Roger D. Kouyos ◽  
Annelies S. Zinkernagel ◽  
Clément Vulin

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Cytometry ◽  
1994 ◽  
Vol 17 (2) ◽  
pp. 119-127 ◽  
Author(s):  
F. Verhaegen ◽  
A. Vral ◽  
J. Seuntjens ◽  
N. W. Schipper ◽  
L. de Ridder ◽  
...  

Biofouling ◽  
2021 ◽  
pp. 1-10
Author(s):  
Zhijing Wan ◽  
Ben T. MacVicar ◽  
Shea Wyatt ◽  
Diana E. Varela ◽  
Rajkumar Padmawar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document