Mechanical Loading of Blood Cells in Turbulent Flow

Author(s):  
Nathan J. Quinlan
2011 ◽  
Vol 393-395 ◽  
pp. 992-995
Author(s):  
Zhong Yun ◽  
Chuang Xiang ◽  
Xiao Yan Tang ◽  
Fen Shi

The strongly swirling turbulent flow in the internal flow field of a high-speed spiral blood pump(HSBP), is one of important factors leading to the fragmentation of the red blood cell(RBC) and the hemolysis. The study on the turbulent injure principle of blood in the HSBP is carried out by using the theory of waterpower rotated flow field and the hemorheology. The numerical equation of the strongly swirling turbulent flow field is proposed. The largest stable diameter of red blood cells in the turbulent flow field is analyzed. The determinant gist on the red blood cell turbulent fragmentation is obtained. The results indicate that in the HSMP, when turbulent flow is more powerful, shear stress is weaker, the vortex mass with energy in flow field may cause serious turbulent fragmentation because of the diameter which is smaller than the RBC’s. The RBC’s turbulent breakage will occur when the Weber value is larger than 12.


Author(s):  
Mostafa Shakeri ◽  
Iman Khodarahmi ◽  
M. Keith Sharp

Considerable uncertainty exists about how momentum and energy are transferred to cells in turbulent flow, which has been shown to cause six times more damage to red blood cells (RBC’s) than laminar flow with the same mean wall shear stress [Kameneva, et al. 2004]. Though it is a purely mathematical construct to yield closure of the time-averaged Navier-Stokes equation for a continuum fluid, which is not valid at the scale of the cell, Reynolds stress has been used as an empirical indicator for damage potential [Sallam & Hwang 1984]. Other scales, including local viscous stress [Jones 1995], flow of plasma around inertia cells [Quinlan & Dooley 2007], shear within eddies [Quinlan & Dooley 2007] and shear between rigid cells within an eddy [Antiga & Steinman 2009], have been forwarded. To provide data to validate these models, an imaging system was assembled to directly observe RBC’s in turbulent flow under a microscope.


Author(s):  
Padraic N. Dooley ◽  
Nathan J. Quinlan

Prosthetic heart valves (PHVs) and other cardiovascular devices induce flow features such as turbulence, stagnation and high shear which do not occur in the native flow, and can lead to hemolysis and thrombosis due to mechanical loading of cells. As an aid to the development of cardiovascular implants, many researchers have attempted to correlate blood damage with macroscopic flow parameters through in vitro testing. The parameters most widely used are the macroscopic viscous shear stress (e.g. Paul et al. [1]) and the macroscopic Reynolds stresses in turbulent flow (e.g. Sallam and Hwang [2]). Although these quantities are valuable predictors of flow induced blood damage, they are not equivalent to the true stresses on a blood cell. In particular, Reynolds stress characterises velocity fluctuations at all length scales; therefore, it cannot completely describe the complex structure of turbulent flow on the cellular scale at which blood damage is initiated.


2005 ◽  
Vol 38 (8) ◽  
pp. 1557-1565 ◽  
Author(s):  
Mauro Grigioni ◽  
Patrizia Caprari ◽  
Anna Tarzia ◽  
Giuseppe D’Avenio

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Mesude Ozturk ◽  
Dimitrios V. Papavassiliou ◽  
Edgar A. O'Rear

In this work, contributing factors for red blood cell (RBC) damage in turbulence are investigated by simulating jet flow experiments. Results show that dissipative eddies comparable or smaller in size to the red blood cells cause hemolysis and that hemolysis corresponds to the number and, more importantly, the surface area of eddies that are associated with Kolmogorov length scale (KLS) smaller than about 10 μm. The size distribution of Kolmogorov scale eddies is used to define a turbulent flow extensive property with eddies serving as a means to assess the turbulence effectiveness in damaging cells, and a new hemolysis model is proposed. This empirical model is in agreement with hemolysis results for well-defined systems that exhibit different exposure times and flow conditions, in Couette flow viscometer, capillary tube, and jet flow experiments.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Sign in / Sign up

Export Citation Format

Share Document