On the nilradical of a parabolic subgroup

Author(s):  
Karin Baur
Keyword(s):  
1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2013 ◽  
Vol 23 (06) ◽  
pp. 1431-1467
Author(s):  
EDDY GODELLE ◽  
LUIS PARIS

We define the notion of preGarside group slightly lightening the definition of Garside group so that all Artin–Tits groups are preGarside groups. This paper intends to give a first basic study on these groups. Firstly, we introduce the notion of parabolic subgroup, we prove that any preGarside group has a (partial) complemented presentation, and we characterize the parabolic subgroups in terms of these presentations. Afterwards we prove that the amalgamated product of two preGarside groups along a common parabolic subgroup is again a preGarside group. This enables us to define the family of preGarside groups of FC type as the smallest family of preGarside groups that contains the Garside groups and that is closed by amalgamation along parabolic subgroups. Finally, we make an algebraic and combinatorial study on FC type preGarside groups and their parabolic subgroups.


Author(s):  
Indranil Biswas ◽  
Georg Schumacher

AbstractLet G be a simple linear algebraic group defined over an algebraically closed field k of characteristic p ≥ 0, and let P be a maximal proper parabolic subgroup of G. If p > 0, then we will assume that dimG/P ≤ p. Let ι : H ↪ G/P be a reduced smooth hypersurface in G/P of degree d. We will assume that the pullback homomorphism is an isomorphism (this assumption is automatically satisfied when dimH ≥ 3). We prove that the tangent bundle of H is stable if the two conditions τ(G/P) ≠ d and hold; here n = dimH, and τ(G/P) ∈ is the index of G/P which is defined by the identity = where L is the ample generator of Pic(G/P) and is the anti–canonical line bundle of G/P. If d = τ(G/P), then the tangent bundle TH is proved to be semistable. If p > 0, and then TH is strongly stable. If p > 0, and d = τ(G/P), then TH is strongly semistable.


2010 ◽  
Vol 53 (2) ◽  
pp. 218-222
Author(s):  
Indranil Biswas

AbstractLet P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over ℂ, such that n := dimℂG/P ≥ 4. Let ι : Z ↪ G/P be a reduced smooth hypersurface of degree at least (n – 1) · degree(T(G/P))/n. We prove that the restriction of the tangent bundle ι*TG/P is semistable.


Author(s):  
Ravi S. Kulkarni

AbstractA Neumann subgroup of the classical modular group is by definition a complement of a maximal parabolic subgroup. Recently Neumann subgroups have been studied in a series of papers by Brenner and Lyndon. There is a natural extension of the notion of a Neumann subgroup in the context of any finitely generated Fuchsian group Γ acting on the hyperbolic plane H such that Γ/H is homeomorphic to an open disk. Using a new geometric method we extend the work of Brenner and Lyndon in this more general context.


2020 ◽  
Vol 117 (12) ◽  
pp. 6398-6408
Author(s):  
Lin Weng ◽  
Don Zagier

In earlier papers L.W. introduced two sequences of higher-rank zeta functions associated to a smooth projective curve over a finite field, both of them generalizing the Artin zeta function of the curve. One of these zeta functions is defined geometrically in terms of semistable vector bundles of rank n over the curve and the other one group-theoretically in terms of certain periods associated to the curve and to a split reductive group G and its maximal parabolic subgroup P. It was conjectured that these two zeta functions coincide in the special case whenG=SLnand P is the parabolic subgroup consisting of matrices whose final row vanishes except for its last entry. In this paper we prove this equality by giving an explicit inductive calculation of the group-theoretically defined zeta functions in terms of the original Artin zeta function (corresponding ton=1) and then verifying that the result obtained agrees with the inductive determination of the geometrically defined zeta functions found by Sergey Mozgovoy and Markus Reineke in 2014.


Sign in / Sign up

Export Citation Format

Share Document