Bone Marrow-Derived Ex Vivo Created Hematopoietic Chimeric Cells to Support Engraftment and Maintain Long-Term Graft Survival in Reconstructive Transplantation

Author(s):  
Maria Siemionow ◽  
Joanna Cwykiel ◽  
Maria Madajka
Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Abstract Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2324-2324
Author(s):  
Juan Xiao ◽  
Bing Han ◽  
Wanling Sun ◽  
Yuping Zhong ◽  
Yongji Wu

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder characterized by intravascular hemolysis, venous thrombosis, and bone marrow (BM) failure. Until now, allogeneic hematopoietic stem cell transplantation is still the only way to cure PNH. Eculizumab, although very promising, is not the eradication of the disease because of raising the possibility of severe intravascular hemolysis if therapy is interrupted. Here we enriched the residual bone marrow normal progenitor cells (marked by CD34+CD59+) from PNH patients, tried to find an effective way of expanding the progenitors cells used for autologous bone marrow transplantation (ABMT). Objective To expand CD34+CD59+ cells isolated from patients with PNH and observe the long-term hemaotopoietic reconstruction ability of the expanded cells both ex vivo and in vivo. Methods CD34+CD59+ cells from 13 patients with PNH and CD34+ cells from 11 normal controls were separated from the bone marrow monouclear cells first by immunomagnetic microbead and then by flow cytometry autoclone sorting. The selected cells were then cultivated under different conditions for two weeks to find out the optimal expansion factors. The long-term hematopoietic supporting ability of expanded CD34+CD59+ cells was evaluated by long-term culture in semi-solid medium in vitro and long-term engraftment in irradiated severe combined immunodeficiency(SCID) mice in vivo. Results The best combination of hematopoietic growth factors for ex vivo expansion was SCF+IL-3+IL-6+FL+Tpo+Epo, and the most suitable time for harvest was on day 7. Although the CD34+CD59+ PNH cells had impaired ex vivo increase compared with normal CD34+ cells (the biggest expansion was 23.49±3.52 fold in CD34+CD59+ PNH cells and 38.82±4.32 fold in CD34+ normal cells, P<0.01 ), they remained strong colony-forming capacity even after expansion ( no difference was noticed in CFCs or LTC-IC of PNH CD34+CD59+ cells before and after expansion, P>0.05). According to the above data, 11/13(84.3%) patients with PNH can get enough CD34+CD59+cells for ABMT after expansion. The survival rate and human CD45 expression in different organs was similar between the irradiated SCID mice transplanted with expanded CD34+CD59+ PNH cells and those with normal CD34+ cells (P>0.05). The peripheral blood cell count recovered on day 90 in mice transplanted with PNH cells, which was compatible with those transplanted with normal cells (P>0.05). On secondary transplantation, the peripheral blood cell count returned to almost normal on day 30 in mice transplanted with either PNH cells or normal cells. Lower CD45 percentage was found in secondary transplantation compared with primary transplantation but no difference between mice transplanted with different cells. Conclusion Isolated CD34+CD59+ cells from patients with PNH can be effectively expanded ex vivo and can support lasting hematopoiesis both ex vivo and in vivo. These data provide a new potential way of managing PNH with ABMT.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 614-614 ◽  
Author(s):  
Haiming Xu ◽  
Hartmut Geiger ◽  
Kathleen Szczur ◽  
Deidra Deira ◽  
Yi Zheng ◽  
...  

Abstract Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow (BM), self-renewal, proliferation and differentiation to mature blood cells. However, the molecular regulation of HSC engraftment is still poorly defined. Small Rho GTPases are critical regulator of cell migration, proliferation and differentiation in multiple cell types. While their role in HSC functions has begun to be understood, the role of their regulator in vivo has been understudied. P190-B GTPase Activating Protein (GAP), a negative regulator of Rho activity, has been implicated in regulating cell size and adipogenesis-myogenesis cell fate determination during fetal development (Sordella, Dev Cell, 2002; Cell 2003). Here, we investigated the role of p190-B in HSC/P engraftment. Since mice lacking p190-B die before birth, serial competitive repopulation assay was performed using fetal liver (FL) tissues from day E14.5 WT and p190-B−/− embryos. WT and p190-B−/− FL cells exhibited similar levels of engraftment in primary recipients. However, the level of contribution of p190-B−/− cells to peripheral blood and bone marrow was maintained between the primary and secondary recipients and still easily detectable in tertiary recipients, while the level of contribution of FL WT cells dramatically decreased with successive serial transplantion and was barely detectable in tertiary recipients. The contribution to T cell, B cell and myeloid cell reconstitution was similar between the genotypes. A pool of HSC was maintained in serially transplanted p190-B−/− animals, since LinnegScaposKitpos (LSK) cells were still present in the BM of p190-B−/− secondary engrafted mice while this population disappeared in WT controls. Importantly, this enhanced long term engraftment was due to a difference in the functional capacity of p190-B−/− HSC compared to WT HSC since highly enriched p190-B−/− HSC (LSK) demonstrated similar enhanced serial transplantation potential. Because previous studies have suggested that the loss of long term function of HSC during serial transplantation can depend, at least in part, on the upregulation of the cyclin dependent kinase inhibitor p16Ink4a (Ito et al, Nat Med 2006), the expression of p16Ink4a was examined during serial transplantation. While expression of p16Ink4a increased in WT HSC in primary and secondary recipients, p16Ink4a remained low in p190-B−/− HSC, which indicated that p190-B-deficiency represses the upregulation of p16Ink4a in HSC in primary and secondary transplant recipients. This provides a possible mechanism of p190-B-mediated HSC functions. We next examined whether p190-B-deficiency may preserve the repopulating capacity of HSC/P during ex vivo cytokine-induced culture. While freshly isolated LSK cells from WT and p190-B−/− mice exhibited comparable intrinsic clonogenic capacity, the frequency of colony-forming unit after 7 days in culture was 2 fold-higher in p190-B−/− compared with WT cultures, resulting in a net CFU expansion. Furthermore, competitive repopulation assays showed significantly higher repopulating activity in mice that received p190-B−/− cultured cells compared with WT cells equivalent to a 4.4-fold increase in the estimated frequency of repopulating units. Interestingly, p190-deficiency did not alter cell cycling rate or survival both in vivo and in vitro. Therefore, p190-B-deficiency maintains key HSC functions either in vivo or in ex vivo culture without altering cycling rate and survival of these cells. These findings define p190-B as a critical regulator of HSC functions regulating self renewal activity while maintaining a balance between proliferation and differentiation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Na Yoon Paik ◽  
Grace E. Brown ◽  
Lijian Shao ◽  
Kilian Sottoriva ◽  
James Hyun ◽  
...  

Over 17,000 people require bone marrow transplants annually, based on the US department of Health and Human Services (https://bloodcell.transplant.hrsa.gov). Despite its high therapeutic value in treatment of cancer and autoimmune disorders, transplant of hematopoietic stem cells (HSC) is limited by the lack of sufficient source material due primarily inadequate expansion of functional HSCs ex vivo. Hence, establishing a system to readily expand human umbilical cord blood or bone marrow HSCs in vitro would greatly support clinical efforts, and provide a readily available source of functional stem cells for transplantation. While the bone marrow is the main site of adult hematopoiesis, the fetal liver is the primary organ of hematopoiesis during embryonic development. The fetal liver is the main site of HSC expansion during hematopoietic development, furthermore the adult liver can also become a temporary extra-medullary site of hematopoiesis when the bone marrow is damaged. We have created a bioengineered micropatterned coculture (MPCC) system that consists of primary human hepatocytes (PHHs) islands surrounded and supported by 3T3-J2 mouse embryonic fibroblasts. Long-term establishment of stable PHH-MPCC allows us to culture and expand HSC in serum-free medium supplemented with pro-hematopoietic cytokines such as stem cell factor (SCF) and thrombopoietin (TPO). HSCs cultured on this PHH-MPCC microenvironment for two weeks expanded over 200-fold and formed tight clusters around the periphery of the PHH islands. These expanded cells also retained the expression of progenitor markers of Lin-, Sca1+, cKit+, as well as the long-term HSC phenotypic markers of CD48- and CD150+. In addition to the phenotypic analysis, the expanded cells were transplanted into lethally irradiated recipient mice to determine HSC functionality. The expanded cells from the PHH-MPCC microenvironment were able to provide multi-lineage reconstitution potential in primary and secondary transplants. With our bioengineered MPCC system, we further plan to scale up functional expansion of human HSC ex vivo and to better understand the mechanistic, cell-based niche factors that lead to maintenance and expansion HSC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3348-3348
Author(s):  
Fabiola V. Merriam ◽  
Suzan Imren ◽  
Robert A Landeros ◽  
Colleen Delaney

Abstract Cord blood transplant (CBT) recipients are known to be at risk for delayed engraftment, resulting in an increased risk of morbidity and mortality post transplant. To overcome delayed engraftment, several groups have developed methods to expand ex vivo cord blood stem/progenitor cells (HSPC) which are under clinical evaluation. The majority of these expansion methods require identification of a patient specific cord blood donor as the source material for expansion, resulting in delays in the time to transplant and inherently carry a risk of product failure. In contrast, we have developed an off-the-shelf, universal donor ex vivo expanded cord blood (CB) derived HSPC product intended for use as a transient graft source which has been demonstrated to significantly reduce the incidence of documented bacterial infections in both transplant and non-transplant settings.1,2 Donor chimerism studies conducted weekly in the first month post transplant confirm that the initial early (days 0-14) myelomonocytic engraftment is derived largely from our universal donor graft. Herein, we now demonstrate that the these rapidly engrafting myelomonocytic cells generated from the universal donor graft source are mature and functionally intact human myeloid cells that can fight infectious organisms. CBT recipients enrolled on a phase II myeloablative CBT trial were included in these ancillary studies in which we evaluated the functional capacity of newly generated myeloid cells in peripheral blood. A flow cytometry-based assay which allowed quantitation of both phagocytosis and O2-dependent killing (oxidative burst) in myeloid cells was used. Strikingly, both monocytes (CD14+) and granulocytes (CD15+) in patients' blood displayed similar frequencies of phagocytosis and O2-dependent killing of Staphlococcus aureus at day 7 (90.3%±2.2% phagocytosis and 88.9±5.2% O2-dependent killing n=2) when more than 95% of myeloid cells were from the expanded cell product compared to day 14 (69±13.2% phagocytosis and 94±2% O2-dependent killing, n=2) when more than 99% of cells were from a non-manipulated CB unit as a result of immunologic rejection by the T cell replete CB unit. These findings provide strong evidence that de novo generated myeloid cells from expanded HSPCs are as functionally competent as myeloid cells de novo generated from non-expanded CB. To better study the functionional properties of myeloid cells derived in vivo from rapidly repopulating expanded CB HSPCs, we transplanted either 20,000 non-expanded (NE-HSPC) CD34+ CB cells or their expanded progeny (E-HSPC) into sub-lethally irradiated NOD-scid IL2rγnull (NSG) mice. At day 7 after transplantation mice transplanted with E-HSPC showed 40-fold higher human engraftment in the bone marrow than mice transplanted with NE-HSPC (28.3 ± 1% vs 0.7±0.1%, n=3, p<0.001). Remarkably, the monocytes and granulocytes from their bone marrow showed a similar phagocytic potential to that of the monocytes and granulocytes of mice receiving NE-HSPC (60.4±3.2% vs 69.6±3.2%, n=3, p=0.06). Moreover, the frequency of phagocytosis in the myeloid cells isolated from the lungs of mice receiving E-HSPC was 7-fold higher than in the lungs of mice receiving NE-HSPC. It has been well documented that E-HSPC when infused alone, also contribute to long term engraftment in NSG mice, and therefore at 22 weeks after transplantation, the frequency of phagocytosis in monocytes and granulocytes isolated from the bone marrow of mice receiving E-HSPC remained similar to that in the bone marrow of mice receiving NE-HSPC for Staphlococcus aureus (55.1 ±1.9% vs 43.8%±7%, n=5, p=0.15), Escherichia coli (50.8±2% vs 49 ±8.3%, n=5, p=0.83) and Zymosan (43.7%±3 vs 49.9%±9.2%, n=5, p=0.54) indicating the continued generation of functional myeloid cells from long term repopulating cells. We demonstrate for the first time that ex vivo expanded CB HSPCs rapidly give rise to functional myelomonocytic cells in vivo in patients and immunodeficient mice. This study validates that our universal donor off-the-shelf, expanded CB HSPC cell product is a valuable resource for patients undergoing myeloablative CBT, and further warrants its widespread use in a non-transplant setting as a supportive "myeloid bridge" to mitigate treatment-related morbidity and mortality. 1. Delaney C. et al. Lancet Haematol. 2016 Jul;3(7):e330-9 2. Summers C. et al. Blood 2014 124:3860 Disclosures Delaney: Nohla Therapeutics: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1471-1471
Author(s):  
Munetada Haruyama ◽  
Kozo Yamaichi ◽  
Akira Niwa ◽  
Megumu K Saito ◽  
Tatsutoshi Nakahata

Abstract Ex vivo expansion of hematopoietic stem cells (HSCs) is an attractive therapeutic strategy for many hematologic diseases and genetic disorders. Therefore, a variety of ex vivo expansion techniques have been developed, however these systems were not well done to get long term HSCs (LT-HSCs) which have a long term hematopoietic reconstitution ability. As the reasons, it is considered that the factors associating with the proliferation and self-renewal of LT-HSCs have not been clear yet. To obtain the factors to stimulate the proliferation and self-renewal of LT-HSCs, various conditioned media were evaluated. The supernatants of COS-1 cells transfected with cDNA cording for RelA (one of nuclear factor kappa B subunits) stimulated the proliferation of human CD34+ cells derived from umbilical cord blood (UCB) and increased the number of CFU-Mix strongest of all evaluated conditioned media. 60 liters of the supernatants of COS-1 cells transfected RelA genes were separated by column chromatography purifications. LC-MS/MS analysis of the final active fraction provided the information of hepatoma-derived growth factor (HDGF) as a growth factor. HDGF is a 24kD heparin-binding protein and has reported to stimulate the proliferation in various types of cells including fibroblasts, endothelial cells and hepatoma cells, its receptor(s) and signaling remain unclear, moreover, has no known function in hematopoiesis. The recombinant human HDGF indicated the ability to enhance the proliferation of CD34+ cells dose-dependently and increased the number of CFU-Mix in combination with cytokines compared to cytokines alone, especially HDGF showed the strongest synergy effect in a combination with TPO in all combinations of cytokines. Next, uncultured (UC) CD34+ cells, the cells of an equal initial number of CD34+ cells after the serum-free condition cultures in the presence of TPO alone (T), HDGF alone (H) and HDGF+TPO (HT) were transplanted into sublethally irradiated NOG (NOD/Shi-scid,IL-2RγKO) mice. HT increased the number of CD34+CD38- cells compared to UC, T and H. Analysis of CD34+CD38- cells in bone marrow cells of NOG mice 24 weeks after transplantation revealed that the mean of absolute number of CD34+CD38- cells in HT group showed about 4-fold, that in H group showed about 3-fold compared to that in UC group, however, that in T group were not detected.These results indicated that HT increased HSCs including short term and long term HSCs. In order to investigate whether HDGF could increase the number of LT-HSCs, serial transplantation experiment was carried out. Uncultured CD34+ cells and the CD34+ cells cultured with HT were transplanted into sublethally irradiated NOG mice. At 24 weeks after transplantation, the mean of absolute number of CD34+CD38- cells in HT group showed 6-fold compared to that in UC group, a half of total number of bone marrow cells from each mouse in both groups were transplanted into one secondary sublethally irradiated NOG mouse. Analysis of human hematopoietic cells in both group 20 weeks after transplantation revealed that multi-lineage human hematopoietic cells, such as CD3+ cells, CD19+ cells, CD33+ cells, CD235a+ cells, erythrocytes and platelets, were detected in all mice in HT group, but were not detected in all mice in UC group. The mean of absolute number of CD34+CD38- cells in bone marrow of HT group showed 30-fold compared to that of UC group. These results indicated that HDGF could increase the number of LT-HSCs. We showed here that the CD34+ cells cultured with HDGF can be transplanted to secondary hosts to give rise to long-term multilineage repopulation. Thus, HDGF is a novel factor to promote the proliferation of HSCs and plays an important role in hematopoiesis. HDGF will contribute the new HSCs expansion system development by using UCB for hematopoietic stem cell transplantation. Disclosures No relevant conflicts of interest to declare.


Anemia ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Ouassila Habi ◽  
Johanne Girard ◽  
Valérie Bourdages ◽  
Marie-Chantal Delisle ◽  
Madeleine Carreau

The main cause of morbidity and mortality in Fanconi anemia patients is the development of bone marrow (BM) failure; thus correction of hematopoietic stem cells (HSCs) through gene transfer approaches would benefit FA patients. However, gene therapy trials for FA patients using ex vivo transduction protocols have failed to provide long-term correction. In addition, ex vivo cultures have been found to be hazardous for FA cells. To circumvent negative effects of ex vivo culture in FA stem cells, we tested the corrective ability of direct injection of recombinant lentiviral particles encoding FancC-EGFP into femurs ofFancC−/−mice. Using this approach, we show thatFancC−/−HSCs were efficiently corrected. Intrafemoral gene transfer of theFancCgene prevented the mitomycin C-induced BM failure. Moreover, we show that intrafemoral gene delivery into aplastic marrow restored the bone marrow cellularity and corrected the remaining HSCs. These results provide evidence that targeting FA-deficient HSCs directly in their environment enables efficient and long-term correction of BM defects in FA.


Sign in / Sign up

Export Citation Format

Share Document