Generation of Transgenic Rodent Malaria Parasites Expressing Human Malaria Parasite Proteins

Author(s):  
Ahmed M. Salman ◽  
Catherin Marin Mogollon ◽  
Jing-wen Lin ◽  
Fiona J. A. van Pul ◽  
Chris J. Janse ◽  
...  
BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jane M. Carlton

AbstractThe study of human malaria caused by species of Plasmodium has undoubtedly been enriched by the use of model systems, such as the rodent malaria parasites originally isolated from African thicket rats. A significant gap in the arsenal of resources of the species that make up the rodent malaria parasites has been the lack of any such tools for the fourth of the species, Plasmodium vinckei. This has recently been rectified by Abhinay Ramaprasad and colleagues, whose pivotal paper published in BMC Biology describes a cornucopia of new P. vinckei ‘omics datasets, mosquito transmission experiments, transfection protocols, and virulence phenotypes, to propel this species firmly into the twenty-first century.


2001 ◽  
Vol 69 (6) ◽  
pp. 4041-4047 ◽  
Author(s):  
Johannes T. Dessens ◽  
Jacqui Mendoza ◽  
Charles Claudianos ◽  
Joseph M. Vinetz ◽  
Emad Khater ◽  
...  

ABSTRACT During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite,Plasmodium berghei. We show that the gene, namedPbCHT1, is a structural ortholog ofPgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity inAnopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds—an artificial situation where midgut invasion occurs before PM formation—suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution ofPlasmodium-mosquito interactions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


2009 ◽  
Vol 84 (7) ◽  
pp. 664
Author(s):  
Balaji Yegneswaran ◽  
David Alcid ◽  
Janani Mohan

2007 ◽  
Vol 142 (6) ◽  
pp. 715-720 ◽  
Author(s):  
Y. Kimata-Ariga ◽  
T. Saitoh ◽  
T. Ikegami ◽  
T. Horii ◽  
T. Hase

Sign in / Sign up

Export Citation Format

Share Document