Cross-Presentation Assay for Human Dendritic Cells

Author(s):  
Elodie Segura
2021 ◽  
Author(s):  
Simon van Haren ◽  
Gabriel Kristian Pedersen ◽  
Azad Kumar ◽  
Tracy Ruckwardt ◽  
Syed Moin ◽  
...  

Abstract Respiratory Syncytial Virus (RSV) is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of T-helper 1 (Th1)-immunity. Here we describe cationic adjuvant formulation (CAF)-08, a liposomal vaccine formulation tailored to induce Th1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. Quantitative phosphoproteomics applied to human dendritic cells revealed a key role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identified signaling events resulting in antigen cross-presentation. In vivo, a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protected newborn mice from RSV infection through induction of antigen-specific CD8+ and Th1 cells. Overall, we describe a novel pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other intracellular pathogens.


Blood ◽  
2012 ◽  
Vol 120 (10) ◽  
pp. 2011-2020 ◽  
Author(s):  
Bithi Chatterjee ◽  
Anna Smed-Sörensen ◽  
Lillian Cohn ◽  
Cécile Chalouni ◽  
Richard Vandlen ◽  
...  

Abstract Dendritic cells (DCs) can capture extracellular antigens and load resultant peptides on to MHC class I molecules, a process termed cross presentation. The mechanisms of cross presentation remain incompletely understood, particularly in primary human DCs. One unknown is the extent to which antigen delivery to distinct endocytic compartments determines cross presentation efficiency, possibly by influencing antigen egress to the cytosol. We addressed the problem directly and quantitatively by comparing the cross presentation of identical antigens conjugated with antibodies against different DC receptors that are targeted to early or late endosomes at distinct efficiencies. In human BDCA1+ and monocyte-derived DCs, CD40 and mannose receptor targeted antibody conjugates to early endosomes, whereas DEC205 targeted antigen primarily to late compartments. Surprisingly, the receptor least efficient at internalization, CD40, was the most efficient at cross presentation. This did not reflect DC activation by CD40, but rather its relatively poor uptake or intra-endosomal degradation compared with mannose receptor or DEC205. Thus, although both early and late endosomes appear to support cross presentation in human DCs, internalization efficiency, especially to late compartments, may be a negative predictor of activity when selecting receptors for vaccine development.


2016 ◽  
Vol 196 (4) ◽  
pp. 1711-1720 ◽  
Author(s):  
Wenbin Ma ◽  
Yi Zhang ◽  
Nathalie Vigneron ◽  
Vincent Stroobant ◽  
Kris Thielemans ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Francesca Spadaro ◽  
Caterina Lapenta ◽  
Simona Donati ◽  
Laura Abalsamo ◽  
Vincenzo Barnaba ◽  
...  

Abstract Cross-presentation allows antigen-presenting cells to present exogenous antigens to CD8+ T cells, playing an essential role in controlling infections and tumor development. IFN-α induces the rapid differentiation of human mono-cytes into dendritic cells, known as IFN-DCs, highly efficient in mediating cross-presentation, as well as the cross-priming of CD8+ T cells. Here, we have investigated the mechanisms underlying the cross-presentation ability of IFN-DCs by studying the intracellular sorting of soluble ovalbumin and nonstructural-3 protein of hepatitis C virus. Our results demonstrate that, independently from the route and mechanism of antigen entry, IFN-DCs are extraordinarily competent in preserving internalized proteins from early degradation and in routing antigens toward the MHC class-I processing pathway, allowing long-lasting, cross-priming capacity. In IFN-DCs, both early and recycling endosomes function as key compartments for the storage of both antigens and MHC-class I molecules and for proteasome- and transporter-associated with Ag processing–dependent auxiliary cross-presentation pathways. Because IFN-DCs closely resemble human DCs naturally occurring in vivo in response to infections and other danger signals, these findings may have important implications for the design of vaccination strategies in neoplastic or chronic infectious diseases.


2001 ◽  
Vol 31 (12) ◽  
pp. 3432-3442 ◽  
Author(s):  
Marie Larsson ◽  
Jean-Francois Fonteneau ◽  
Selin Somersan ◽  
Catherine Sanders ◽  
Kara Bickham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document