IFN-α enhances cross-presentation in human dendritic cells by modulating antigen survival, endocytic routing, and processing

Blood ◽  
2012 ◽  
Vol 119 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Francesca Spadaro ◽  
Caterina Lapenta ◽  
Simona Donati ◽  
Laura Abalsamo ◽  
Vincenzo Barnaba ◽  
...  

Abstract Cross-presentation allows antigen-presenting cells to present exogenous antigens to CD8+ T cells, playing an essential role in controlling infections and tumor development. IFN-α induces the rapid differentiation of human mono-cytes into dendritic cells, known as IFN-DCs, highly efficient in mediating cross-presentation, as well as the cross-priming of CD8+ T cells. Here, we have investigated the mechanisms underlying the cross-presentation ability of IFN-DCs by studying the intracellular sorting of soluble ovalbumin and nonstructural-3 protein of hepatitis C virus. Our results demonstrate that, independently from the route and mechanism of antigen entry, IFN-DCs are extraordinarily competent in preserving internalized proteins from early degradation and in routing antigens toward the MHC class-I processing pathway, allowing long-lasting, cross-priming capacity. In IFN-DCs, both early and recycling endosomes function as key compartments for the storage of both antigens and MHC-class I molecules and for proteasome- and transporter-associated with Ag processing–dependent auxiliary cross-presentation pathways. Because IFN-DCs closely resemble human DCs naturally occurring in vivo in response to infections and other danger signals, these findings may have important implications for the design of vaccination strategies in neoplastic or chronic infectious diseases.

2002 ◽  
Vol 196 (6) ◽  
pp. 817-827 ◽  
Author(s):  
Joke M.M. den Haan ◽  
Michael J. Bevan

Murine splenic dendritic cells (DCs) can be divided into two subsets based on CD8α expression, but the specific role of each subset in stimulation of T cells is largely unknown. An important function of DCs is the ability to take up exogenous antigens and cross-present them in the context of major histocompatibility complex (MHC) class I molecules to CD8+ T cells. We previously demonstrated that, when cell-associated ovalbumin (OVA) is injected into mice, only the CD8+ DC subset cross-presents OVA in the context of MHC class I. In contrast to this selectivity with cell-associated antigen, we show here that both DC subsets isolated from mice injected with OVA/anti-OVA immune complexes (OVA-IC) cross-present OVA to CD8+ T cells. The use of immunoglobulin G Fc receptor (FcγR) common γ-chain–deficient mice revealed that the cross-presentation by CD8− DCs depended on the expression of γ-chain–containing activating FcγRs, whereas cross-presentation by CD8+ DCs was not reduced in γ-chain–deficient mice. These results suggest that although CD8+ DCs constitutively cross-present exogenous antigens in the context of MHC class I molecules, CD8− DCs only do so after activation, such as via ligation of FcγRs. Cross-presentation of immune complexes may play an important role in autoimmune diseases and the therapeutic effect of antitumor antibodies.


2009 ◽  
Vol 206 (2) ◽  
pp. 399-410 ◽  
Author(s):  
Romina S. Goldszmid ◽  
Isabelle Coppens ◽  
Avital Lev ◽  
Pat Caspar ◽  
Ira Mellman ◽  
...  

Toxoplasma gondii tachyzoites infect host cells by an active invasion process leading to the formation of a specialized compartment, the parasitophorous vacuole (PV). PVs resist fusion with host cell endosomes and lysosomes and are thus distinct from phagosomes. Because the parasite remains sequestered within the PV, it is unclear how T. gondii–derived antigens (Ag’s) access the major histocompatibility complex (MHC) class I pathway for presentation to CD8+ T cells. We demonstrate that recruitment of host endoplasmic reticulum (hER) to the PV in T. gondii–infected dendritic cells (DCs) directly correlates with cross-priming of CD8+ T cells. Furthermore, we document by immunoelectron microscopy the transfer of hER components into the PV, a process indicative of direct fusion between the two compartments. In strong contrast, no association between hER and phagosomes or Ag presentation activity was observed in DCs containing phagocytosed live or dead parasites. Importantly, cross-presentation of parasite-derived Ag in actively infected cells was blocked when hER retrotranslocation was inhibited, indicating that the hER serves as a conduit for the transport of Ag between the PV and host cytosol. Collectively, these findings demonstrate that pathogen-driven hER–PV interaction can serve as an important mechanism for Ag entry into the MHC class I pathway and CD8+ T cell cross-priming.


2001 ◽  
Vol 193 (3) ◽  
pp. 405-412 ◽  
Author(s):  
Marion Subklewe ◽  
Casper Paludan ◽  
Ming L. Tsang ◽  
Karsten Mahnke ◽  
Ralph M. Steinman ◽  
...  

Dendritic cells (DCs) are not targets for infection by the transforming Epstein-Barr virus (EBV). To test if the adjuvant role of DCs could be harnessed against EBV latency genes by cross-presentation, DCs were allowed to process either autologous or human histocompatibility leukocyte antigen (HLA)-mismatched, transformed, B lymphocyte cell lines (LCLs) that had been subject to apoptotic or necrotic cell death. After phagocytosis of small numbers of either type of dead LCL, which lacked direct immune-stimulatory capacity, DCs could expand CD8+ T cells capable of killing LCLs that were HLA matched to the DCs. Necrotic EBV-transformed, major histocompatibility complex (MHC) class I–negative LCLs, when presented by DCs, also could elicit responses to MHC class II–negative, EBV-transformed targets that were MHC class I matched to the DCs, confirming efficient cross-presentation of LCL antigens via MHC class I on the DC. Part of this EBV-specific CD8+ T cell response, in both lytic and interferon γ secretion assays, was specific for the EBV nuclear antigen (EBNA)3A and latent membrane protein (LMP)2 latency antigens that are known to be expressed at low levels in transformed cells. The induced CD8+ T cells recognized targets at low doses, 1–10 nM, of peptide. Therefore, the capacity of DCs to cross-present antigens from dead cells extends to the expansion of high affinity T cells specific for viral latency antigens involved in cell transformation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3904-3904
Author(s):  
Maarten L. Zandvliet ◽  
J.H. Frederik Falkenburg ◽  
Michel G.D. Kester ◽  
Arnoud H. de Ru ◽  
Peter A. van Veelen ◽  
...  

Abstract For the induction or boosting of antigen-specific CD8+ T cell responses, long synthetic peptides have been used in vaccination studies. Superior in vivo CD8+ T cell responses have been reported following vaccination with long peptides compared with minimal peptides, which was attributed to selective uptake and cross-presentation by professional antigen-presenting cells. Furthermore, to generate antigen-specific T cell lines for adoptive immunotherapy or to measure antigen-specific T cell responses, protein-spanning pools of overlapping long synthetic peptides can be used to simultaneously activate CD8+ and CD4+ T cells in peripheral blood mononuclear cells (PBMC) ex vivo. Although exogenous antigen is predominantly presented in MHC class II, it has been suggested that cross-presentation of long peptides in MHC class I can occur. However, the mechanism of cross-presentation of exogenous long peptides in MHC class I is not clear. Various models for cross-presentation have been described following uptake of soluble antigen in endosomes, among which antigen transport over the endosomal membrane followed by the classical proteasome- and TAP-dependent route, and entrance of MHC class I in the recycling endocytic MHC class II pathway where peptidase-trimmed exogenous antigens can exchange with peptides in the MHC class I molecules, resulting in TAP- and proteasome-independent cross-presentation. To improve the design of peptides for the in vivo or ex vivo activation of CD8+ T cells we investigated the mechanism and efficiency of cross-presentation of long peptides. We observed that antigen-presenting cells in peripheral blood, in particular monocytes, loaded with 15-mer peptides, 31-mer peptides or full length protein containing the NLV epitope were able to very efficiently induce IFNg production by cytomegalovirus (CMV) pp65 NLV-specific T cells. Specific T cells were most efficiently activated by N-terminally extended variants of the minimal epitope, while the use of C-terminally extended variants resulted in a 10-fold reduction of activation efficiency. Purification of these antigens by high performance liquid chromatography (HPLC) followed by mass spectrometry demonstrated that activation was not caused by contamination with the minimal epitope sequence. Also CD8+ T cells specific for other CMV and minor histocompatibility antigen (mHag) epitopes were activated by monocytes loaded with 15-mer or 20-mer peptides. Again N-terminally extended variants of minimal epitopes very efficiently induced activation, while the use of C-terminally variants or full length protein resulted in highly variable efficiency of activation, ranging from 10-fold reduction to complete absence of activation. Interestingly, TAP-deficient T2 cells loaded with CMV pp65 NLV antigens also efficiently activated NLV-specific T cells, indicating that the route of presentation was TAP-independent. Addition of lactacystin during loading of monocytes with CMV pp65 NLV 15-mer did not affect activation of specific T cells, suggesting that cross-presentation was proteasome-independent. Addition of primaquine reduced activation of specific T cells by the NLV 15-mer peptide, but not by the minimal NLV 9-mer peptide, suggesting that cross-presentation was dependent on endosomal recycling. To compare cross-presentation with presentation of endogenously synthesized antigen, TAP-competent T1 and TAP-deficient T2 cells were retrovirally transduced with the CMV pp65 gene. CMV pp65-specific T cells were activated by CMV pp65 transduced T1 but not T2 cells, indicating that endogenously synthesized CMV pp65 required processing and presentation by the classical proteasome- and TAP-dependent route. These data suggest that long synthetic peptides can be processed by peptidases in endocytic compartments and presented by recycling MHC class I molecules. Not all immunogenic epitopes that have been selected in vivo for efficient processing and presentation by the classical pathway may be presented efficiently by cross-presentation. As the efficiency of cross-presentation of long synthetic peptides may depend on the sequence of the C-terminal extension, a rational design of peptides is crucial for efficient activation of CD8+ T cells in approaches of vaccination, adoptive transfer and immune monitoring.


2002 ◽  
Vol 196 (12) ◽  
pp. 1627-1638 ◽  
Author(s):  
Laura Bonifaz ◽  
David Bonnyay ◽  
Karsten Mahnke ◽  
Miguel Rivera ◽  
Michel C. Nussenzweig ◽  
...  

To identify endocytic receptors that allow dendritic cells (DCs) to capture and present antigens on major histocompatibility complex (MHC) class I products in vivo, we evaluated DEC-205, which is abundant on DCs in lymphoid tissues. Ovalbumin (OVA) protein, when chemically coupled to monoclonal αDEC-205 antibody, was presented by CD11c+ lymph node DCs, but not by CD11c− cells, to OVA-specific, CD4+ and CD8+ T cells. Receptor-mediated presentation was at least 400 times more efficient than unconjugated OVA and, for MHC class I, the DCs had to express transporter of antigenic peptides (TAP) transporters. When αDEC-205:OVA was injected subcutaneously, OVA protein was identified over a 4–48 h period in DCs, primarily in the lymph nodes draining the injection site. In vivo, the OVA protein was selectively presented by DCs to TCR transgenic CD8+ cells, again at least 400 times more effectively than soluble OVA and in a TAP-dependent fashion. Targeting of αDEC-205:OVA to DCs in the steady state initially induced 4–7 cycles of T cell division, but the T cells were then deleted and the mice became specifically unresponsive to rechallenge with OVA in complete Freund's adjuvant. In contrast, simultaneous delivery of a DC maturation stimulus via CD40, together with αDEC-205:OVA, induced strong immunity. The CD8+ T cells responding in the presence of agonistic αCD40 antibody produced large amounts of interleukin 2 and interferon γ, acquired cytolytic function in vivo, emigrated in large numbers to the lung, and responded vigorously to OVA rechallenge. Therefore, DEC-205 provides an efficient receptor-based mechanism for DCs to process proteins for MHC class I presentation in vivo, leading to tolerance in the steady state and immunity after DC maturation.


2016 ◽  
Vol 196 (4) ◽  
pp. 1711-1720 ◽  
Author(s):  
Wenbin Ma ◽  
Yi Zhang ◽  
Nathalie Vigneron ◽  
Vincent Stroobant ◽  
Kris Thielemans ◽  
...  

2015 ◽  
Vol 112 (47) ◽  
pp. 14664-14669 ◽  
Author(s):  
Anand K. Katakam ◽  
Hans Brightbill ◽  
Christian Franci ◽  
Chung Kung ◽  
Victor Nunez ◽  
...  

Dendritic cells (DCs) link innate and adaptive immunity and use a host of innate immune and inflammatory receptors to respond to pathogens and inflammatory stimuli. Although DC maturation via canonical NF-κB signaling is critical for many of these functions, the role of noncanonical NF-κB signaling via the serine/threonine kinase NIK (NF-κB–inducing kinase) remains unclear. Because NIK-deficient mice lack secondary lymphoid organs, we generated transgenic mice with targeted NIK deletion in CD11c+ cells. Although these mice exhibited normal lymphoid organs, they were defective in cross-priming naive CD8+ T cells following vaccination, even in the presence of anti-CD40 or polyinosinic:polycytidylic acid to induce DC maturation. This impairment reflected two intrinsic defects observed in splenic CD8+ DCs in vitro, namely antigen cross-presentation to CD8+ T cells and secretion of IL-12p40, a cytokine known to promote cross-priming in vivo. In contrast, antigen presentation to CD4+ T cells was not affected. These findings reveal that NIK, and thus probably the noncanonical NF-κB pathway, is critical to allow DCs to acquire the capacity to cross-present antigen and prime CD8 T cells after exposure to licensing stimuli, such as an agonistic anti-CD40 antibody or Toll-like receptor 3 ligand.


Sign in / Sign up

Export Citation Format

Share Document