Direct Organogenesis and Indirect Somatic Embryogenesis by In Vitro Reversion of Mature Female Floral Buds to a Vegetative State

Author(s):  
Eman M. M. Zayed
Author(s):  
Tammy Estabrooks ◽  
Zhongmin Dong

Somatic embryogenesis is the process by which somatic cells are induced into an embryogenic state, followed by differentiation into embryos. Somatic embryogenesis, in addition to being a method of propagation, can serve as an experimental tool for research into plant embryo development. This is a review of the current literature on in vitro plant somatic embryogenesis and the molecular advances made to identify genes expressed during the various stages of this process. Some factors hindering the elucidation of the molecular mechanisms underlying somatic embryogenesis are discussed.L’embryogenèse somatique est le processus par lequel les cellules somatiques passent à l’état embryogène et se différencient en embryons. En plus de constituer une méthode de propagation, elle peut servir d’outil expérimental de recherche pour développer des embryons de plantes. Le présent document est une revue de la documentation sur l’embryogenèse somatique végétale in vitro et sur les progrès réalisés à l’échelle moléculaire pour identifier les gènes exprimés au cours des divers stades du processus. On examine aussi certains facteurs qui rendent difficile l’élucidation des mécanismes moléculaires de l’embryogenèse somatique.


2015 ◽  
Vol 14 (15) ◽  
pp. 1261-1274 ◽  
Author(s):  
Sagwa Mulanda Eliud ◽  
Chuhila Yeremia ◽  
Musumba Awori Ryan ◽  
Ochieng Adero Mark ◽  
Onzere Amugune Nelson ◽  
...  

HortScience ◽  
2006 ◽  
Vol 41 (5) ◽  
pp. 1325-1329 ◽  
Author(s):  
Martín Mata-Rosas ◽  
Ángel Jiménez-Rodríguez ◽  
Victor M. Chávez-Avila

Plants of Magnolia dealbata were regenerated from zygotic embryos through somatic embryogenesis and direct organogenesis. Medium and incubation conditions were determinating factors for the development of morphogenetic responses. Photoperiodic exposure was a limiting factor in the general development of the explants, and incubation in darkness allowed their development. The highest formation of shoots per responding explant were obtained on woody plant (WP) medium supplemented with 13.3 μM or 22.2 μM 6-benzylaminopurine (BA) in combination with 2.26 μM or in absence of 2,4-dichlorophenoxyacetic acid (2,4-D) from which 2.5 shoots per explant were induced. Subcultures on WP medium, supplemented with polyvinylpyrrolidone (PUP) 40,000 1 g·L–1) avoided necrosis of explants. Somatic embryos were formed in 85% of explants cultivated on WP medium with 2,4-D (2.3 μM or 4.5 μM); 20% induced indirect embryogenesis and 65% formed direct somatic embryogenesis. The plants were transferred to soil to acclimatize under greenhouse conditions, achieving 90% survival. Somatic embryo conversion to plantlets was obtained with subculture on WP basal medium without growth regulators. In vitro culture can play a key role in the propagation and conservation of this endangered species.


1996 ◽  
Vol 19 (3) ◽  
pp. 233-240 ◽  
Author(s):  
B. N. S. Murthy ◽  
Jerrin Victor ◽  
Rana P. Singh ◽  
R. A. Fletcher ◽  
Praveen K. Saxena

Author(s):  
D. Bele ◽  
Nishi Mishra ◽  
Sushma Tiwari ◽  
M. K. Tripathi ◽  
G. Tiwari

Nodal segments of sandalwood were cultured on MS medium amended with different plant growth regulators in varying concentrations to search out higher in vitro response leading to plantlet regeneration via somatic embryogenesis and/or organogenesis. Higher proportion of direct somatic embryogenesis, number(s) of somatic embryo per explant and plantlet regeneration via direct organogenesis were recorded on MS medium supplemented with a moderate concentration of TDZ (1.0 mgl-1) in combination with comparatively a lower concentration of NAA (0.5 mgl-1). A relative higher concentration of BAP (1.0-2.0 mgl-1) in combination with a lower concentration of NAA (0.5 mgl-1) promoted frequency of indirect somatic embryogenesis. Ratio of organ formation directly from surface of cultured explants was recovered from culture medium fortified with a higher concentration of BA at the concentration of 4.0 mgl-1 in combination with a lower concentration of NAA (0.5 mgl-1). Maximum plantlets regenerated via somatic embryogenesis (direct and/or indirect) on regeneration medium supplemented with 2.0 mgl-1TDZ  in combination with 1.0 mg l-1GA3, while plantlets in higher frequencies via indirect organogenesis was attained with regeneration medium amended with comparatively lower concentration of TDZ (1.0 mg l-1) in combination with 0.5 mgl-1 GA3 and 0.5     mgl-1 NAA. The plantlets were transferred to pots and hardened in Environmental Growth Cabinet and Net House during preliminary weaning period and transferred to field successfully. Morphologically normal plants were recovered.


2002 ◽  
Vol 59 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Adriana Patrícia Ricci ◽  
Francisco de Assis Alves Mourão Filho ◽  
Beatriz Madalena Januzzi Mendes ◽  
Sonia Maria de Stefano Piedade

Most of the plant regeneration processes in citrus, through tissue culture, involve indirect somatic embryogenesis. The optimization of these processes is important for the development of in vitro plant improvement and micropropagation studies. Studies to evaluate the effect of different carbohydrates in somatic embryogenesis were conducted using calli from 'Ponkan' mandarin (Citrus reticulata, Blanco), 'Cravo' mandarin (C. reticulata), 'Itaboraí' sweet orange (C. sinensis L. Osbeck.), 'Valencia' sweet orange (C. sinensis) and 'Kinnow' mandarin (C. nobilis Loureiro x C. deliciosa Tenore). The culture medium used was MT supplemented with sucrose, galactose, glucose, maltose or lactose with the following concentrations of 18, 37, 75, 110, and 150 mM. The culture medium used for the maturation of somatic embryos had 0, 15, 29, 44, 58 and 73 mM of sucrose, in presence or absence of 0.5 g L<FONT FACE=Symbol>-</FONT>1 of activated charcoal. Seventy-three mM of sucrose with 0.1 mg L<FONT FACE=Symbol>-</FONT>1 of GA3 in the presence or absence 0.5 g L<FONT FACE=Symbol>-</FONT>1 of activated charcoal was also tested. Overall, the carbohydrates galactose or lactose induced a higher number of somatic embryos. Sucrose concentrations of 58 and 73 mM generated a higher number of plantlets from mature embryos of 'Ponkan' mandarin and 'Valencia' sweet orange.


Sign in / Sign up

Export Citation Format

Share Document