Calm-Water Resistance

Author(s):  
Liang Yun ◽  
Alan Bliault ◽  
Huan Zong Rong
Keyword(s):  
2021 ◽  
Vol 9 (6) ◽  
pp. 680
Author(s):  
Hui Li ◽  
Yan Feng ◽  
Muk Chen Ong ◽  
Xin Zhao ◽  
Li Zhou

Selecting an optimal bow configuration is critical to the preliminary design of polar ships. This paper proposes an approach to determine the optimal bow of polar ships based on present numerical simulation and available published experimental studies. Unlike conventional methods, the present approach integrates both ice resistance and calm-water resistance with the navigating time. A numerical simulation method of an icebreaking vessel going straight ahead in level ice is developed using SPH (smoothed particle hydrodynamics) numerical technique of LS-DYNA. The present numerical results for the ice resistance in level ice are in satisfactory agreement with the available published experimental data. The bow configurations with superior icebreaking capability are obtained by analyzing the sensitivities due to the buttock angle γ, the frame angle β and the waterline angle α. The calm-water resistance is calculated using FVM (finite volume method). Finally, an overall resistance index devised from the ship resistance in ice/water weighted by their corresponding weighted navigation time is proposed. The present approach can be used for evaluating the integrated resistance performance of the polar ships operating in both a water route and ice route.


Author(s):  
Balasubramanyam Sasanapuri ◽  
Viraj Suresh Shirodkar ◽  
Wesley Wilson ◽  
Samir Kadam ◽  
Shin Hyung Rhee

A Virtual Model Basin (VMB) is developed based on a Computational Fluid Dynamics (CFD) approach to solving the Reynolds Averaged Navier-Stokes (RANS) equations along with the Volume of Fluid (VOF) method for predicting the free surface. The primary objective of this work is to develop methodologies for the VMB and to demonstrate the capabilities for a generic multi-hull ship geometry. The VMB is used to simulate various model basin tests for steady resistance, maneuvering and seakeeping. For a generic catamaran hull configuration, the methodologies are used for solving these problems and the results are discussed in this paper. VMB results are compared with the results of a benchmarked potential flow theory method for calm water resistance.


2009 ◽  
Author(s):  
Kevin J Maki ◽  
◽  
Lawrence J Doctors ◽  
Riccardo Broglia ◽  
Andrea Di Mascio ◽  
...  

Author(s):  
Ould el Moctar ◽  
Sebastian Sigmund ◽  
Jens Ley ◽  
Thomas E. Schellin

Two Reynolds-Averaged Navier–Stokes (RANS) based field methods numerically predicted added resistance in regular head waves for a 14,000 TEU containership and a medium size cruise ship. Long and short waves of different frequencies were considered. Added resistance was decomposed into diffraction and radiation force components, whereby diffraction forces were obtained by restraining the ship in waves and radiation forces by prescribing the motions of the ship in calm water. In short waves, the diffraction part of total resistance was dominant as almost no ship motions were induced. In long waves, the sum of diffraction and radiation forces exceeded total resistance, i.e., the interaction of these two force components, which caused the reduction of total resistance, needed to be accounted for. Predictions were compared with model test measurements. Particular emphasis was placed on the following aspects: discretization errors, frictional resistance as part of total added resistance in waves, and diffraction and radiation components of added resistance in waves. Investigations comprised two steps, namely, a preliminary simulation to determine calm water resistance and a second simulation to compute total resistance in waves, always using the same grids. Added resistance was obtained by subtracting calm water resistance from total averaged wave resistance. When frictional resistance dominated over calm water resistance, which holds for nearly all conventional ships at moderate Froude numbers, high grid densities were required in the neighborhood surrounding the hull as well as prism cells on top of the model's surface.


2015 ◽  
Vol 710 ◽  
pp. 91-97
Author(s):  
Aladdin Elhadad ◽  
Wen Yang Duan ◽  
Rui Deng

Thewave glideris composed of two parts: the float is roughly the size and shape of a surfboard that contains all the instrumentation needed for scientific experiments; the sub has wings and hangs 6 meters below on an umbilical tether. This difference allows wave energy to be harvested to produce forward thrust. According to the lake of design information and data for thewave glider, the main aim of the study is usingcomputational fluid dynamics (CFD)to present a method to predict calm water resistance for the floating part of thewave glider(the hull).Wigley parabolic hulland high speed round bilge form (NPL)have been investigated in order to estimate the hydrodynamic performances of the hull usingCFDsoftware fluent.Wave glideris designed with slender hull shapes in order to decrease the wave making resistance of the ship.In this paper a method is evaluated by comparing the numerical predictions forwigleyandNPLforms (2m) using the same mesh generation method under the same conditions to design the hull. Calculations fortotal calm water resistanceare carried out using three different mesh sizes for Froude numbers in the range of 0.10 to 0.40 and compared for accuracy of the solution parameters. The close agreement between the numerical predictions shows the importance ofCFDapplications in estimating the hydrodynamics performance to design the floating hull and the numerical method is useful in glider design. This means that the method discussed in this paper can be used for the resistance calculation of some hulls like the float of the glider.


2014 ◽  
Vol 619 ◽  
pp. 38-43 ◽  
Author(s):  
Aladdin Elhadad ◽  
Wen Yang Duan ◽  
Rui Deng ◽  
H. Elhanfey

Thewave glideris an autonomous unmanned vehicle (AUV) which uses the power of the ocean to propel itself. The purpose of this study is using the well known slender modelNPLin developing hull in an attempt to design the floating hull ofwave glider.CFDandMaxsurfsoftware are used to present a method focused on mesh generation to predictcalm water resistancefor the hull. Calculations are carried out for Froude numbers in the range of 0.10 to 0.40. Three different mesh sizes are used forCFDto calculate the mesh effects. The results of numerical predictions under the same conditions obtained fromCFDandMaxsurfcalculations are obtained and compared for accuracy of the solution parameters. The comparison shows a good agreement between the results. The method is useful and acceptable and the overall numerical scheme is suitable for resistance prediction.


Author(s):  
Ould el Moctar ◽  
Sebastian Sigmund ◽  
Thomas E. Schellin

A RANS-based field method numerically predicted added resistance in regular head waves for a 14000 TEU containership (Duisburg Test Case) and a medium-size cruise ship. We concentrated our investigations on short waves. For different frequencies, we decomposed added resistance into diffraction and radiation force components, whereby diffraction forces were obtained by restraining the ship in waves and radiation forces, by prescribing the motions of the ship in calm water. In short waves, the diffraction part of total resistance was dominant as almost no ship motions were induced. In long waves, the sum of diffraction and radiation forces exceeded total resistance, i.e., the interaction of these two force components, which caused the reduction of total resistance, had to be accounted for. Predictions were compared with model test measurements. Particular emphasis was placed on the following aspects: discretization errors, frictional resistance as part of total added resistance in waves, diffraction and radiation components of added resistance in waves, and the influence of surge motion on added resistance. Investigations comprised two steps, namely, a preliminary simulation to determine calm-water resistance and a second simulation to compute total resistance in waves, always using the same grids. Added resistance was obtained by subtracting calm-water resistance from total averaged wave resistance. When frictional resistance dominated calm-water resistance, which holds for nearly all conventional ships at moderate Froude numbers, high grid densities were required in the neighborhood surrounding the hull.


1999 ◽  
Author(s):  
J. A. Kenning ◽  
U. B. Sonnenberg

Over the past years a considerable extension has been given to the Delft Systematic Yacht Hull Series (DSYHS) The DSYHS data set now contains information about both the bare hull and appended hull resistance in the upright and the heeled condition, the resistance increase due to the longitudinal trimming moment of the sails, the side force production and induced resistance due to side force at various combinations of forward speeds, leeway angles and heeling angles. New formulations for the relevant hydrodynamic forces as function of the hull geometry parameters have been derived to be able to deal with a larger variety of yacht hull shapes and appendage designs. During the past two years some results of this research have already been published. In the present paper an almost complete picture of the relevant expressions which may be used in a Velocity Prediction Program (VPP) will be presented.


2015 ◽  
Vol 74 (5) ◽  
Author(s):  
Arifah Ali ◽  
Adi Maimun ◽  
Yasser M. Ahmed ◽  
Rahimuddin Rahimuddin ◽  
Mohamad Pauzi A. Ghani

Demand on High Speed Craft (HSC) is increasing due to development of inland transportation. Therefore, many analysis have been conducted to evaluate performance of this modern ship. One of the important analysis is calm water resistance test. Resistance component of the hull and wave pattern around the hull are obtained from the calm water test. These criteria are important in analyzing flow around hull, especially on wave interference between the hulls. In this paper, flow around hull has been studied for one model of Semi SWATH hull form with fin stabilizers installation by performing calm water resistance test in deep water. The fore fin angle is fixed to zero degree while the aft fin angle is varied to 0, 5 and 15 degree. The effects of fin angle to resistance criteria and flow around hull are investigated. Wave height has been recorded using longitudinal wave probe during resistance test. For each configuration, the investigation is conducted with range of Length Froude Number from 0.34 to 0.69. From the analysis, it is found that flow around the hull of Semi SWATH is affected by fin angle and the effect is various depend on the Froude number.


Sign in / Sign up

Export Citation Format

Share Document