Pseudomonas aeruginosa, an opportunistic human pathogen, causes both acute and chronic lung disease. P. aeruginosa exerts many of its pathophysiological effects by secreting virulence factors, including pyocyanine, a redox-active compound that increases intracellular oxidant stress. Because oxidant stress has been shown to affect cytosolic Ca2+concentration ([Ca2+]c) in other cell types, we studied the effect of pyocyanine on [Ca2+]cin human airway epithelial cells (A549 and HBE). At lower concentrations, pyocyanine inhibits inositol 1,4,5-trisphosphate formation and [Ca2+]cincreases in response to G protein-coupled receptor agonists. Conversely, at higher concentrations, pyocyanine itself increases [Ca2+]c. The pyocyanine-dependent [Ca2+]cincrease appears to be oxidant dependent and to result from increased inositol trisphosphate and release of Ca2+from intracellular stores. Ca2+plays a central role in epithelial cell function, including regulation of ion transport, mucus secretion, and ciliary beat frequency. By disrupting Ca2+homeostasis, pyocyanine could interfere with these critical functions and contribute to the pathophysiological effects observed in Pseudomonas-associated lung disease.