Fluorescence-Based Ratiometric Measurement of CRAC Channel Activity in STIM-Orai-Overexpressing HEK-293 Cells

Author(s):  
Shuce Zhang ◽  
Lian He ◽  
Yubin Zhou ◽  
Youjun Wang
2005 ◽  
Vol 289 (3) ◽  
pp. C543-C556 ◽  
Author(s):  
Sean G. Brown ◽  
Alison Thomas ◽  
Lodewijk V. Dekker ◽  
Andrew Tinker ◽  
Joanne L. Leaney

G protein-gated inward rectifier (Kir3) channels are inhibited by activation of Gq/11-coupled receptors and this has been postulated to involve the signaling molecules protein kinase C (PKC) and/or phosphatidylinositol 4,5-bisphosphate (PIP2). Their precise roles in mediating the inhibition of this family of channels remain controversial. We examine here their relative roles in causing inhibition of Kir3.1/3.2 channels stably expressed in human embryonic kidney (HEK)-293 cells after muscarinic M3 receptor activation. In perforated patch mode, staurosporine prevented the Gq/11-mediated, M3 receptor, inhibition of channel activity. Recovery from M3-mediated inhibition was wortmannin sensitive. Whole cell currents, where the patch pipette was supplemented with PIP2, were still irreversibly inhibited by M3 receptor stimulation. When adenosine A1 receptors were co-expressed, inclusion of PIP2 rescued the A1-mediated response. Recordings from inside-out patches showed that catalytically active PKC applied directly to the intracellular membrane face inhibited the channels: a reversible effect modulated by okadaic acid. Generation of mutant heteromeric channel Kir3.1S185A/Kir3.2C-S178A, still left the channel susceptible to receptor, pharmacological, and direct kinase-mediated inhibition. Biochemically, labeled phosphate is incorporated into the channel. We suggest that PKC-δ mediates channel inhibition because recombinant PKC-δ inhibited channel activity, M3-mediated inhibition of the channel, was counteracted by overexpression of two types of dominant negative PKC-δ constructs, and, by using confocal microscopy, we have demonstrated translocation of green fluorescent protein-tagged PKC-δ to the plasma membrane on M3 receptor stimulation. Thus Kir3.1/3.2 channels are sensitive to changes in membrane phospholipid levels but this is contingent on the activity of PKC-δ after M3 receptor activation in HEK-293 cells.


2009 ◽  
Vol 297 (4) ◽  
pp. L758-L766 ◽  
Author(s):  
Shu Zhu ◽  
Darren D. Browning ◽  
Richard E. White ◽  
David Fulton ◽  
Scott A. Barman

Large conductance, calcium- and voltage-activated potassium (BKCa) channels are important modulators of pulmonary vascular smooth muscle membrane potential, and phosphorylation of BKCa channels by protein kinases regulates pulmonary arterial smooth muscle function. However, little is known about the effect of phosphorylating specific channel subunits on BKCa channel activity. The present study was done to determine the effect of mutating protein kinase C (PKC) phosphorylation site serine 1076 (S1076) on transfected human BKCa channel α-subunits in human embryonic kidney (HEK-293) cells, a heterologous expression system devoid of endogenous BKCa channels. Results showed that mutating S1076 altered the effect of PKC activation on BKCa channels in HEK-293 cells. Specifically, the phospho-deficient mutation BKCa-α(S1076A)/β1 attenuated the excitatory effect of the PKC activator phorbol myristate acetate (PMA) on BKCa channels, whereas the phospho-mimetic mutation BKCa-α(S1076E)/β1 increased the excitatory effect of PMA on BKCa channels. In addition, the phospho-null mutation S1076A blocked the activating effect of cGMP-dependent protein kinase G (PKG) on BKCa channels. Collectively, these results suggest that specific putative PKC phosphorylation site(s) on human BKCa channel α-subunits influences BKCa channel activity, which may subsequently alter pulmonary vascular smooth muscle function and tone.


Autophagy ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. 1407-1417 ◽  
Author(s):  
Patience Musiwaro ◽  
Matthew Smith ◽  
Maria Manifava ◽  
Simon A. Walker ◽  
Nicholas T. Ktistakis
Keyword(s):  
Hek 293 ◽  

2005 ◽  
Vol 103 (6) ◽  
pp. 1156-1166 ◽  
Author(s):  
Kevin J. Gingrich ◽  
Son Tran ◽  
Igor M. Nikonorov ◽  
Thomas J. Blanck

Background Volatile anesthetics depress cardiac contractility, which involves inhibition of cardiac L-type calcium channels. To explore the role of voltage-dependent inactivation, the authors analyzed halothane effects on recombinant cardiac L-type calcium channels (alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1), which differ by the alpha2/delta1 subunit and consequently voltage-dependent inactivation. Methods HEK-293 cells were transiently cotransfected with complementary DNAs encoding alpha1C tagged with green fluorescent protein and beta2a, with and without alpha2/delta1. Halothane effects on macroscopic barium currents were recorded using patch clamp methodology from cells expressing alpha1Cbeta2a and alpha1Cbeta2aalpha2/delta1 as identified by fluorescence microscopy. Results Halothane inhibited peak current (I(peak)) and enhanced apparent inactivation (reported by end pulse current amplitude of 300-ms depolarizations [I300]) in a concentration-dependent manner in both channel types. alpha2/delta1 coexpression shifted relations leftward as reported by the 50% inhibitory concentration of I(peak) and I300/I(peak)for alpha1Cbeta2a (1.8 and 14.5 mm, respectively) and alpha1Cbeta2aalpha2/delta1 (0.74 and 1.36 mm, respectively). Halothane reduced transmembrane charge transfer primarily through I(peak) depression and not by enhancement of macroscopic inactivation for both channels. Conclusions The results indicate that phenotypic features arising from alpha2/delta1 coexpression play a key role in halothane inhibition of cardiac L-type calcium channels. These features included marked effects on I(peak) inhibition, which is the principal determinant of charge transfer reductions. I(peak) depression arises primarily from transitions to nonactivatable states at resting membrane potentials. The findings point to the importance of halothane interactions with states present at resting membrane potential and discount the role of inactivation apparent in current time courses in determining transmembrane charge transfer.


2007 ◽  
Vol 9 (4) ◽  
pp. 475-485 ◽  
Author(s):  
R. M. Johann ◽  
Ch. Baiotto ◽  
Ph. Renaud
Keyword(s):  
Hek 293 ◽  

2010 ◽  
Vol 35 (7) ◽  
pp. 1075-1082 ◽  
Author(s):  
Lina Ji ◽  
Abha Chauhan ◽  
Ved Chauhan

2007 ◽  
Vol 454 (3) ◽  
pp. 441-450 ◽  
Author(s):  
Christian Barmeyer ◽  
Jeff Huaqing Ye ◽  
Shafik Sidani ◽  
John Geibel ◽  
Henry J. Binder ◽  
...  
Keyword(s):  
Hek 293 ◽  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gail A Robertson ◽  
Harinath Sale ◽  
David Tester ◽  
Thomas J O’Hara ◽  
Pallavi Phartiyal ◽  
...  

Cardiac I Kr is a critical repolarizing current in the heart and a target for inherited and acquired long QT syndrome. Biochemical studies show that native I Kr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of I Kr functional properties derives primarily from studies of homo-oligomers of the original hERG 1a isolate. The hERG 1a and 1b subunits are identical except at the amino (NH2) terminus, which in hERG 1b is much shorter and has a unique primary sequence. We compared the biophysical properties of currents produced by hERG 1a and 1a/1b channels expressed in HEK-293 cells at near-physiological temperatures. We found that heteromeric hERG 1a/1b currents are much larger than hERG 1a currents and conduct 80% more charge during an action potential. This surprising difference corresponds to a two-fold increase in the apparent rates of activation and recovery from inactivation, which reduces rectification and facilitates current rebound during repolarization. Kinetic modeling shows these gating differences account quantitatively for the differences in current amplitude between the two channel types. Depending on the action potential model used, loss of 1b predicts an increase in action potential duration of 27 ms (7%) or 41 ms (17%), respectively. Drug sensitivity was also different. Compared to homomeric 1a channels, heteromeric 1a/1b channels were inhibited by E-4031 with a slower time course and a corresponding four-fold positive shift in the IC 50 . Differences in current kinetics and drug sensitivity were modeled by “NH2 mode” gating with conformational states bound by the amino terminus in hERG 1a homomers but not 1a/1b heteromers. The importance of hERG 1b in vivo is supported by the identification of a 1b-specific A8V missense mutation in 1/269 unrelated genotype-negative LQTS patients and absent in 400 control alleles. Mutant 1bA8V expressed alone or with hERG 1a in HEK-293 cells nearly eliminated 1b protein. Thus, mutations specifically disrupting hERG 1b function are expected to reduce cardiac I Kr , prolong QT interval and enhance drug sensitivity, thus representing a potential mechanism underlying inherited or acquired LQTS.


Sign in / Sign up

Export Citation Format

Share Document