Adherence of Proteus mirabilis to Uroepithelial Cells

Author(s):  
María José González ◽  
Victoria Iribarnegaray ◽  
Paola Scavone ◽  
Pablo Zunino
1997 ◽  
Vol 43 (8) ◽  
pp. 709-717 ◽  
Author(s):  
Douglas L. Tolson ◽  
Blair A. Harrison ◽  
Roger K. Latta ◽  
Kok K. Lee ◽  
Eleonora Altman

Proteus mirabilis is a common causative agent of human urinary tract infections, especially in catheterized patients and in those patients with structural abnormalities of the urinary tract. In addition to the production of hemolysin and urease, fimbriae-mediated adherence to uroepithelial cells and kidney epithelium may be essential for virulence of P. mirabilis. A single P. mirabilis strain is capable of expressing several morphologically distinct fimbrial species, which can each be favoured by specific in vitro growth conditions. The fimbrial species reported to date include mannose-resistant/Proteus-like fimbriae, ambient temperature fimbriae, P. mirabilis fimbriae, and nonagglutinating fimbriae (NAF). Here, using intact bacteria or purified NAF as immunogens, we have generated the first reported NAF-specific monoclonal antibodies (mAbs). Bacteria expressing NAF as their only fimbrial species adhered strongly to a number of cell lines in vitro, including uroepithelial cell lines. Binding of P. mirabilis was markedly reduced following preincubation with NAF-specific mAbs and Fab fragments. The presence of NAF with highly conserved N-terminal sequences on all P. mirabilis strains so far examined, combined with the ability of both anti-NAF mAbs and purified NAF molecules to inhibit P. mirabilis adherence in vitro, suggests that NAF may contribute to the pathogenesis of P. mirabilis.Key words: fimbriae, adherence, monoclonal antibodies, Proteus mirabilis, receptors.


Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3231-3237 ◽  
Author(s):  
Pablo Zunino ◽  
Vanessa Sosa ◽  
Andrew G. Allen ◽  
Andrew Preston ◽  
Geraldine Schlapp ◽  
...  

Proteus mirabilis expresses different types of fimbriae simultaneously. Several fimbrial types have been described and their role in the colonization of the urinary tract is under study. Previously, P. mirabilis fimbriae (PMF) have been shown to be associated with bacterial colonization of the lower urinary tract but not of the kidneys. In this study, a pmfA mutant was generated and used in several in vivo and in vitro studies. Two different urinary tract infection models in the mouse and two in vitro assays of bacterial adhesion to uroepithelial cells were performed. Expression of PmfA in a collection of P. mirabilis strains of different sources was also assessed. The results shown here indicate that PMF are involved in both bladder and kidney colonization by P. mirabilis and that these fimbriae are widely distributed among P. mirabilis isolates from different origins since all strains tested expressed PmfA.


Author(s):  
Xie Nianming ◽  
Ding Shaoqing ◽  
Wang Luping ◽  
Yuan Zenglin ◽  
Zhan Guolai ◽  
...  

Perhaps the data about periplasmic enzymes are obtained through biochemical methods but lack of morphological description. We have proved the existence of periplasmic bodies by electron microscope and described their ultrastructures. We hope this report may draw the attention of biochemists and mrophologists to collaborate on researches in periplasmic enzymes or periplasmic bodies with each other.One or more independent bodies may be seen in the periplasmic space between outer and inner membranes of Gram-negative bacteria, which we called periplasmic bodies. The periplasmic bodies have been found in seven species of bacteria at least, including the Pseudomonas aeroginosa. Shigella flexneri, Echerichia coli. Yersinia pestis, Campylobacter jejuni, Proteus mirabilis, Clostridium tetani. Vibrio cholerae and Brucella canis.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
JAA do Nascimento Júnior ◽  
BS dos Santos ◽  
LCA de Araújo ◽  
AVA Lima ◽  
TD da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document