swarmer cell
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 4)

H-INDEX

26
(FIVE YEARS 2)

2021 ◽  
Vol 9 (6) ◽  
pp. 1116
Author(s):  
Laurens Maertens ◽  
Pauline Cherry ◽  
Françoise Tilquin ◽  
Rob Van Houdt ◽  
Jean-Yves Matroule

Bacteria encounter elevated copper (Cu) concentrations in multiple environments, varying from mining wastes to antimicrobial applications of copper. As the role of the environment in the bacterial response to Cu ion exposure remains elusive, we used a tagRNA-seq approach to elucidate the disparate responses of two morphotypes of Caulobacter crescentus NA1000 to moderate Cu stress in a complex rich (PYE) medium and a defined poor (M2G) medium. The transcriptome was more responsive in M2G, where we observed an extensive oxidative stress response and reconfiguration of the proteome, as well as the induction of metal resistance clusters. In PYE, little evidence was found for an oxidative stress response, but several transport systems were differentially expressed, and an increased need for histidine was apparent. These results show that the Cu stress response is strongly dependent on the cellular environment. In addition, induction of the extracytoplasmic function sigma factor SigF and its regulon was shared by the Cu stress responses in both media, and its central role was confirmed by the phenotypic screening of a sigF::Tn5 mutant. In both media, stalked cells were more responsive to Cu stress than swarmer cells, and a stronger basal expression of several cell protection systems was noted, indicating that the swarmer cell is inherently more Cu resistant. Our approach also allowed for detecting several new transcription start sites, putatively indicating small regulatory RNAs, and additional levels of Cu-responsive regulation.


2021 ◽  
Vol 118 (13) ◽  
pp. e2024705118
Author(s):  
Jiarui Wang ◽  
W. E. Moerner ◽  
Lucy Shapiro

Asymmetric cell division generates two daughter cells with distinct characteristics and fates. Positioning different regulatory and signaling proteins at the opposing ends of the predivisional cell produces molecularly distinct daughter cells. Here, we report a strategy deployed by the asymmetrically dividing bacterium Caulobacter crescentus where a regulatory protein is programmed to perform distinct functions at the opposing cell poles. We find that the CtrA proteolysis adaptor protein PopA assumes distinct oligomeric states at the two cell poles through asymmetrically distributed c-di-GMP: dimeric at the stalked pole and monomeric at the swarmer pole. Different polar organizing proteins at each cell pole recruit PopA where it interacts with and mediates the function of two molecular machines: the ClpXP degradation machinery at the stalked pole and the flagellar basal body at the swarmer pole. We discovered a binding partner of PopA at the swarmer cell pole that together with PopA regulates the length of the flagella filament. Our work demonstrates how a second messenger provides spatiotemporal cues to change the physical behavior of an effector protein, thereby facilitating asymmetry.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
George K. Auer ◽  
Piercen M. Oliver ◽  
Manohary Rajendram ◽  
Ti-Yu Lin ◽  
Qing Yao ◽  
...  

ABSTRACT Swarmer cells of the Gram-negative uropathogenic bacteria Proteus mirabilis and Vibrio parahaemolyticus become long (>10 to 100 μm) and multinucleate during their growth and motility on polymer surfaces. We demonstrated that the increasing cell length is accompanied by a large increase in flexibility. Using a microfluidic assay to measure single-cell mechanics, we identified large differences in the swarmer cell stiffness (bending rigidity) of P. mirabilis (5.5 × 10−22 N m2) and V. parahaemolyticus (1.0 × 10−22 N m2) compared to vegetative cells (1.4 × 10−20 N m2 and 2.2 × 10−22 N m2, respectively). The reduction in bending rigidity (∼2-fold to ∼26-fold) was accompanied by a decrease in the average polysaccharide strand length of the peptidoglycan layer of the cell wall from 28 to 30 disaccharides to 19 to 22 disaccharides. Atomic force microscopy revealed a reduction in P. mirabilis peptidoglycan thickness from 1.5 nm (vegetative cells) to 1.0 nm (swarmer cells), and electron cryotomography indicated changes in swarmer cell wall morphology. P. mirabilis and V. parahaemolyticus swarmer cells became increasingly sensitive to osmotic pressure and susceptible to cell wall-modifying antibiotics (compared to vegetative cells)—they were ∼30% more likely to die after 3 h of treatment with MICs of the β-lactams cephalexin and penicillin G. The adaptive cost of “swarming” was offset by the increase in cell susceptibility to physical and chemical changes in their environment, thereby suggesting the development of new chemotherapies for bacteria that leverage swarming for the colonization of hosts and for survival. IMPORTANCE Proteus mirabilis and Vibrio parahaemolyticus are bacteria that infect humans. To adapt to environmental changes, these bacteria alter their cell morphology and move collectively to access new sources of nutrients in a process referred to as “swarming.” We found that changes in the composition and thickness of the peptidoglycan layer of the cell wall make swarmer cells of P. mirabilis and V. parahaemolyticus more flexible (i.e., reduce cell stiffness) and that they become more sensitive to osmotic pressure and cell wall-targeting antibiotics (e.g., β-lactams). These results highlight the importance of assessing the extracellular environment in determining antibiotic doses and the use of β-lactam antibiotics for treating infections caused by swarmer cells of P. mirabilis and V. parahaemolyticus.


2019 ◽  
Vol 47 (1) ◽  
pp. 187-196 ◽  
Author(s):  
Antonio Frandi ◽  
Justine Collier

Abstract The environmental Alphaproteobacterium Caulobacter crescentus is a classical model to study the regulation of the bacterial cell cycle. It divides asymmetrically, giving a stalked cell that immediately enters S phase and a swarmer cell that stays in the G1 phase until it differentiates into a stalked cell. Its genome consists in a single circular chromosome whose replication is tightly regulated so that it happens only in stalked cells and only once per cell cycle. Imbalances in chromosomal copy numbers are the most often highly deleterious, if not lethal. This review highlights recent discoveries on pathways that control chromosome replication when Caulobacter is exposed to optimal or less optimal growth conditions. Most of these pathways target two proteins that bind directly onto the chromosomal origin: the highly conserved DnaA initiator of DNA replication and the CtrA response regulator that is found in most Alphaproteobacteria. The concerted inactivation and proteolysis of CtrA during the swarmer-to-stalked cell transition license cells to enter S phase, while a replisome-associated Regulated Inactivation and proteolysis of DnaA (RIDA) process ensures that initiation starts only once per cell cycle. When Caulobacter is stressed, it turns on control systems that delay the G1-to-S phase transition or the elongation of DNA replication, most probably increasing its fitness and adaptation capacities.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Kristin Little ◽  
Murray J. Tipping ◽  
Karine A. Gibbs

ABSTRACTIndividual cells of the bacteriumProteus mirabiliscan elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating thatP. mirabilisrequires the generffGfor swarmer cell elongation and subsequent swarm motility. TherffGgene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein ofEscherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize therffGgene inP. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of therffGgene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that inrffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilisswarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, therffG-dependent moieties provide a novel attractive target for potential antimicrobials.


2018 ◽  
Author(s):  
George K. Auer ◽  
Piercen M. Oliver ◽  
Manohary Rajendram ◽  
Ti-Yu Lin ◽  
Qing Yao ◽  
...  

AbstractSwarmer cells of the gram-negative pathogenic bacteriaProteus mirabilisandVibrio parahaemolyticusbecome long (>10-100 μm) and multinucleate during their growth and motility on polymer surfaces. We demonstrate increasing cell length is accompanied by a large increase in flexibility. Using a microfluidic assay to measure single-cell mechanics, we identified large differences in swarmer cell stiffness of (bending rigidity ofP. mirabilis, 9.6 × 10−22N m2;V. parahaemolyticus, 9.7 × 10−23N m2) compared to vegetative cells (1.4 × 10−20N m2and 3.2 × 10−22N m2, respectively). The reduction in bending rigidity (~3-15 fold) was accompanied by a decrease in the average polysaccharide strand length of the peptidoglycan layer of the cell wall from 28-30 to 19-22 disaccharides. Atomic force microscopy revealed a reduction inP. mirabilispeptidoglycan thickness from 1.5 nm (vegetative) to 1.0 nm (swarmer) and electron cryotomography indicated changes in swarmer cell wall morphology.P. mirabilisandV. parahaemolyticusswarmer cells became increasingly sensitive to osmotic pressure and susceptible to cell wall-modifying antibiotics (compared to vegetative cells)—they were ~30% more likely to die after 3 h of treatment with minimum inhibitory concentrations of the β-lactams cephalexin and penicillin G. The adaptive cost of swarming is offset by the increase in cell susceptibility to physical and chemical changes in their environment, thereby suggesting the development of new chemotherapies for bacteria that leverage swarming for colonization of hosts and survival.ImportanceProteus mirabilisandVibrio parahaemolyticusare bacteria that infect humans. To adapt to environmental changes, these bacteria alter their cell morphology and move collectively to access new sources of nutrients in a process referred to as ‘swarming’. We found that a change in the composition and thickness of the peptidoglycan layer of the cell wall makes swarmer cells ofP. mirabilisandV. parahaemolyticusmore flexible (i.e., reduced cell stiffness) and increases their sensitivity to osmotic pressure and cell-wall targeting antibiotics (e.g., β-lactams). These results highlight the importance of assessing the extracellular environment in determining antibiotic doses and the use of β-lactams antibiotics for treating infections caused by swarmer cells ofP. mirabilisandV. parahaemolyticus.


2017 ◽  
Author(s):  
Kristin Little ◽  
Murray J. Tipping ◽  
Karine A. Gibbs

AbstractIndividual cells of the bacteriumProteus mirabiliscan elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating thatP. mirabilisrequires the generffGfor swarmer cell elongation and subsequent swarm motility. TherffGgene encodes a protein homologous to the dTDP-glucose 4,6 dehydratase protein ofEscherichia coli, which contributes to Enterobacterial Common Antigen biosynthesis. Here we characterize therffGgene inP. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that absence of therffGgene induces several stress-responsive pathways including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that inrffG-deficient cells, suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that a RcsB-mediated response acts to suppress emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.Importance statementP. mirabilisswarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multi-functional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, therffG-dependent moieties provide a novel, attractive target for potential antimicrobials.


2016 ◽  
Vol 9 (449) ◽  
pp. ec239-ec239
Author(s):  
A. A. Mushegian
Keyword(s):  

2016 ◽  
Vol 113 (40) ◽  
pp. E5952-E5961 ◽  
Author(s):  
Dante P. Ricci ◽  
Michael D. Melfi ◽  
Keren Lasker ◽  
David L. Dill ◽  
Harley H. McAdams ◽  
...  

Faithful cell cycle progression in the dimorphic bacteriumCaulobacter crescentusrequires spatiotemporal regulation of gene expression and cell pole differentiation. We discovered an essential DNA-associated protein, GapR, that is required forCaulobactergrowth and asymmetric division. GapR interacts with adenine and thymine (AT)-rich chromosomal loci, associates with the promoter regions of cell cycle-regulated genes, and shares hundreds of recognition sites in common with known master regulators of cell cycle-dependent gene expression. GapR target loci are especially enriched in binding sites for the transcription factors GcrA and CtrA and overlap with nearly all of the binding sites for MucR1, a regulator that controls the establishment of swarmer cell fate. Despite constitutive synthesis, GapR accumulates preferentially in the swarmer compartment of the predivisional cell. Homologs of GapR, which are ubiquitous among the α-proteobacteria and are encoded on multiple bacteriophage genomes, also accumulate in the predivisional cell swarmer compartment when expressed inCaulobacter. TheEscherichia colinucleoid-associated protein H-NS, like GapR, selectively associates with AT-rich DNA, yet it does not localize preferentially to the swarmer compartment when expressed exogenously inCaulobacter, suggesting that recognition of AT-rich DNA is not sufficient for the asymmetric accumulation of GapR. Further, GapR does not silence the expression of H-NS target genes when expressed inE. coli, suggesting that GapR and H-NS have distinct functions. We propose thatCaulobacterhas co-opted a nucleoid-associated protein with high AT recognition to serve as a mediator of cell cycle progression.


2015 ◽  
Vol 197 (15) ◽  
pp. 2499-2507 ◽  
Author(s):  
Kristen E. Howery ◽  
Katy M. Clemmer ◽  
Emrah Şimşek ◽  
Minsu Kim ◽  
Philip N. Rather

ABSTRACTA key regulator of swarming inProteus mirabilisis the Rcs phosphorelay, which repressesflhDC, encoding the master flagellar regulator FlhD4C2. Mutants inrcsB, the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified,minCandminD, encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene,minE, was shown to be part of an operon withminCD. To examineminCDEregulation, theminpromoter was identified by 5′ rapid amplification of cDNA ends (5′-RACE), and both transcriptionallacZfusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that theminCDEoperon was RcsB activated. Purified RcsB was capable of directly binding theminCpromoter region. To determine the role of RcsB-mediated activation ofminCDEin swarmer cell differentiation, a polarminCmutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility.IMPORTANCEThis work describes the regulation and role of the MinCDE cell division system inP. mirabilisswarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon inP. mirabilis. Taken together, the data presented in this study begin to address howP. mirabiliselongates upon contact with a solid surface.


Sign in / Sign up

Export Citation Format

Share Document