Cell-Based Therapy for Huntington’s Disease

Author(s):  
Claire M. Kelly ◽  
Stephen B. Dunnett ◽  
Anne E. Rosser
2020 ◽  
Vol 21 (6) ◽  
pp. 2239 ◽  
Author(s):  
Maria Csobonyeiova ◽  
Stefan Polak ◽  
Lubos Danisovic

Huntington’s disease (HD) is an inherited, autosomal dominant, degenerative disease characterized by involuntary movements, cognitive decline, and behavioral impairment ending in death. HD is caused by an expansion in the number of CAG repeats in the huntingtin gene on chromosome 4. To date, no effective therapy for preventing the onset or progression of the disease has been found, and many symptoms do not respond to pharmacologic treatment. However, recent results of pre-clinical trials suggest a beneficial effect of stem-cell-based therapy. Induced pluripotent stem cells (iPSCs) represent an unlimited cell source and are the most suitable among the various types of autologous stem cells due to their patient specificity and ability to differentiate into a variety of cell types both in vitro and in vivo. Furthermore, the cultivation of iPSC-derived neural cells offers the possibility of studying the etiopathology of neurodegenerative diseases, such as HD. Moreover, differentiated neural cells can organize into three-dimensional (3D) organoids, mimicking the complex architecture of the brain. In this article, we present a comprehensive review of recent HD models, the methods for differentiating HD–iPSCs into the desired neural cell types, and the progress in gene editing techniques leading toward stem-cell-based therapy.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 526 ◽  
Author(s):  
Emilie M. André ◽  
Gaëtan J. Delcroix ◽  
Saikrishna Kandalam ◽  
Laurence Sindji ◽  
Claudia N. Montero-Menei

For Huntington’s disease (HD) cell-based therapy, the transplanted cells are required to be committed to a neuronal cell lineage, survive and maintain this phenotype to ensure their safe transplantation in the brain. We first investigated the role of RE-1 silencing transcription factor (REST) inhibition using siRNA in the GABAergic differentiation of marrow-isolated adult multilineage inducible (MIAMI) cells, a subpopulation of MSCs. We further combined these cells to laminin-coated poly(lactic-co-glycolic acid) PLGA pharmacologically active microcarriers (PAMs) delivering BDNF in a controlled fashion to stimulate the survival and maintain the differentiation of the cells. The PAMs/cells complexes were then transplanted in an ex vivo model of HD. Using Sonic Hedgehog (SHH) and siREST, we obtained GABAergic progenitors/neuronal-like cells, which were able to secrete HGF, SDF1 VEGFa and BDNF, of importance for HD. GABA-like progenitors adhered to PAMs increased their mRNA expression of NGF/VEGFa as well as their secretion of PIGF-1, which can enhance reparative angiogenesis. In our ex vivo model of HD, they were successfully transplanted while attached to PAMs and were able to survive and maintain this GABAergic neuronal phenotype. Together, our results may pave the way for future research that could improve the success of cell-based therapy for HDs.


2013 ◽  
Vol 114 (4) ◽  
pp. 754-763 ◽  
Author(s):  
Christof Maucksch ◽  
Elena M. Vazey ◽  
Renee J. Gordon ◽  
Bronwen Connor

2021 ◽  
pp. 1-6
Author(s):  

Huntington’s disease (HD) research is entering an exciting phase, with new approaches such as huntingtin lowering strategies and cell therapies on the horizon. Technological advances to direct the differentiation of stem cells to desired neural types have opened new strategies for restoring damaged neuronal circuits in HD. However, challenges remain in the implementation of cell therapy approaches for patients suffering from HD. Cell therapies, together with other invasive approaches including allele specific oligonucleotides (ASOs) and viral delivery of huntingtin-lowering agents, require direct delivery of the therapeutic agents locally into the brain or cerebrospinal fluid. Delivering substances directly into the brain is complex and presents multiple challenges, including those related to regulatory requirements, safety and efficacy, surgical instrumentation, trial design, patient profiles, and selection of suitable and sensitive primary and secondary outcomes. In addition, production of clinical grade cell-based medicinal products also requires adherence to regulatory standards with extensive quality control of the protocols and cell products across different laboratories and production centers. Currently, there is no consensus on how best to address these challenges. Here we describe the formation of Stem Cells For Huntington’s Disease (SC4HD: https://www.sc4hd.org/), a network of researchers and clinicians working to develop guidance and greater standardization for the HD field for stem cell based transplantation therapy for HD with a mission to work to develop criteria and guidance for development of a neural intra-cerebral stem cell-based therapy for HD.


Sign in / Sign up

Export Citation Format

Share Document