Type III Secretion Systems in Yersinia pestis and Yersinia pseudotuberculosis

Author(s):  
James B. Bliska ◽  
Michelle B. Ryndak ◽  
Jens P. Grabenstein
2005 ◽  
Vol 187 (22) ◽  
pp. 7738-7752 ◽  
Author(s):  
Jeanette E. Bröms ◽  
Petra J. Edqvist ◽  
Katrin E. Carlsson ◽  
Åke Forsberg ◽  
Matthew S. Francis

ABSTRACT Type III secretion systems are used by many animal and plant interacting bacteria to colonize their host. These systems are often composed of at least 40 genes, making their temporal and spatial regulation very complex. Some type III chaperones of the translocator class are important regulatory molecules, such as the LcrH chaperone of Yersinia pseudotuberculosis. In contrast, the highly homologous PcrH chaperone has no regulatory effect in native Pseudomonas aeruginosa or when produced in Yersinia. In this study, we used LcrH-PcrH chaperone hybrids to identify a discrete region in the N terminus of LcrH that is necessary for YscY binding and regulatory control of the Yersinia type III secretion machinery. PcrH was unable to bind YscY and the homologue Pcr4 of P. aeruginosa. YscY and Pcr4 were both essential for type III secretion and reciprocally bound to both substrates YscX of Yersinia and Pcr3 of P. aeruginosa. Still, Pcr4 was unable to complement a ΔyscY null mutant defective for type III secretion and yop-regulatory control in Yersinia, despite the ability of YscY to function in P. aeruginosa. Taken together, we conclude that the cross-talk between the LcrH and YscY components represents a strategic regulatory pathway specific to Yersinia type III secretion.


2013 ◽  
Vol 58 (2) ◽  
pp. 839-850 ◽  
Author(s):  
Danielle L. Jessen ◽  
David S. Bradley ◽  
Matthew L. Nilles

ABSTRACTNumerous Gram-negative pathogens rely upon type III secretion (T3S) systems to cause disease. Several small-molecule inhibitors of the type III secretion systems have been identified; however, few targets of these inhibitors have been elucidated. Here we report that 2,2′-thiobis-(4-methylphenol) (compound D), inhibits type III secretion inYersinia pestis,Yersinia pseudotuberculosis, andPseudomonas aeruginosa. YopD, a protein involved in the formation of the translocon and regulatory processes of the type III secretion system, appears to play a role in the inhibition of secretion by compound D. The use of compound D in T3S regulatory mutants demonstrated a difference in secretion inhibition in the presence and absence of calcium. Interestingly, compound D was effective only under conditions without calcium, indicating that a secretion-active needle structure may be necessary for compound D to inhibit secretion.


2011 ◽  
Vol 286 (41) ◽  
pp. 36098-36107 ◽  
Author(s):  
Xiu-Jun Yu ◽  
Mei Liu ◽  
Steve Matthews ◽  
David W. Holden

Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQL) composed of 322 amino acids and a shorter protein (SsaQS) comprising the C-terminal 106 residues of SsaQL. SsaQL is essential for SPI-2 T3SS function. Loss of SsaQS impairs the function of the T3SS both ex vivo and in vivo. SsaQS binds to its corresponding region within SsaQL and stabilizes the larger protein. Therefore, SsaQL function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.


2002 ◽  
Vol 99 (19) ◽  
pp. 12397-12402 ◽  
Author(s):  
C. Dale ◽  
G. R. Plague ◽  
B. Wang ◽  
H. Ochman ◽  
N. A. Moran

2008 ◽  
Vol 191 (2) ◽  
pp. 563-570 ◽  
Author(s):  
Andreas K. J. Veenendaal ◽  
Charlotta Sundin ◽  
Ariel J. Blocker

ABSTRACT Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.


2019 ◽  
Author(s):  
Sibel Westerhausen ◽  
Melanie Nowak ◽  
Claudia Torres-Vargas ◽  
Ursula Bilitewski ◽  
Erwin Bohn ◽  
...  

AbstractThe elucidation of the molecular mechanisms of secretion through bacterial protein secretion systems is impeded by a lack of assays to quantitatively assess secretion kinetics. Also the analysis of the biological role of these secretion systems as well as the identification of inhibitors targeting these systems would greatly benefit from the availability of a simple, quick and quantitative assay to monitor principle secretion and injection into host cells. Here we present a versatile solution to this need, utilizing the small and very bright NanoLuc luciferase to assess secretion and injection through the type III secretion system encoded by Salmonella pathogenicity island 1. The NanoLuc-based secretion assay features a very high signal-to-noise ratio and sensitivity down to the nanoliter scale. The assay enables monitoring of secretion kinetics and is adaptable to a high throughput screening format in 384-well microplates. We further developed NanoLuc and split-NanoLuc-based assays that enable the monitoring of type III secretion-dependent injection of effector proteins into host cells.ImportanceThe ability to secrete proteins to the bacterial cell surface, to the extracellular environment, or even into target cells is one of the foundations of interbacterial as well as pathogen-host interaction. While great progress has been made in elucidating assembly and structure of secretion systems, our understanding of their secretion mechanism often lags behind, not last because of the challenge to quantitatively assess secretion function. Here, we developed a luciferase-based assay to enable the simple, quick, quantitative, and high throughput-compatible assessment of secretion and injection through virulence-associated type III secretion systems. The assay allows detection of minute amounts of secreted substrate proteins either in the supernatant of the bacterial culture or within eukaryotic host cells. It thus provides an enabling technology to elucidate the mechanisms of secretion and injection of type III secretion systems and is likely adaptable to assay secretion through other bacterial secretion systems.


2022 ◽  
Vol 10 (1) ◽  
pp. 187
Author(s):  
Antoine Zboralski ◽  
Adrien Biessy ◽  
Martin Filion

Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines translocating effector proteins into the cytoplasm of eukaryotic cells. They have been intensively studied for their important roles in animal and plant bacterial diseases. Over the past two decades, genome sequencing has unveiled their ubiquitous distribution in many taxa of Gram-negative bacteria, including plant-beneficial ones. Here, we discuss the distribution and functions of the T3SS in two agronomically important bacterial groups: the symbiotic nodule-forming nitrogen-fixing rhizobia and the free-living plant-beneficial Pseudomonas spp. In legume-rhizobia symbiosis, T3SSs and their cognate effectors play important roles, including the modulation of the plant immune response and the initiation of the nodulation process in some cases. In plant-beneficial Pseudomonas spp., the roles of T3SSs are not fully understood, but pertain to plant immunity suppression, biocontrol against eukaryotic plant pathogens, mycorrhization facilitation, and possibly resistance against protist predation. The diversity of T3SSs in plant-beneficial bacteria points to their important roles in multifarious interkingdom interactions in the rhizosphere. We argue that the gap in research on T3SSs in plant-beneficial bacteria must be bridged to better understand bacteria/eukaryotes rhizosphere interactions and to support the development of efficient plant-growth promoting microbial inoculants.


2005 ◽  
Vol 187 (17) ◽  
pp. 6075-6083 ◽  
Author(s):  
Sasha M. Warren ◽  
Glenn M. Young

ABSTRACT Yersinia enterocolitica biovar 1B maintains three distinct type III secretion (TTS) systems, which independently operate to target proteins to extracellular sites. The Ysa and Ysc systems are prototypical contact-dependent TTS systems that translocate toxic effectors to the cytosols of targeted eukaryotic host cells during infection. The flagellar TTS system is utilized during the assembly of the flagellum and is required for secretion of the virulence-associated phospholipase YplA to the bacterial milieu. When ectopically produced, YplA is also a secretion substrate for the Ysa and Ysc TTS systems. In this study, we define elements that allow YplA recognition and export by the Ysa, Ysc, and flagellar TTS systems. Fusion of various amino-terminal regions of YplA to Escherichia coli alkaline phosphatase (PhoA) lacking its native secretion signal demonstrated that the first 20 amino acids or corresponding mRNA codons of YplA were sufficient for export of YplA-PhoA chimeras by each TTS system. Export of native YplA by each of the three TTS systems was also found to depend on the integrity of its amino terminus. Introduction of a frameshift mutation or deletion of yplA sequences encoding the amino-terminal 20 residues negatively impacted YplA secretion. Deletion of other yplA regions was tolerated, including that resulting in the removal of amino acid residues 30 through 40 of the polypeptide and removal of the 5′ untranslated region of the mRNA. This work supports a model in which independent and distantly related TTS systems of Y. enterocolitica recognize protein substrates by a similar mechanism.


Sign in / Sign up

Export Citation Format

Share Document