scholarly journals A Type III Secretion System Inhibitor Targets YopD while Revealing Differential Regulation of Secretion in Calcium-Blind Mutants of Yersinia pestis

2013 ◽  
Vol 58 (2) ◽  
pp. 839-850 ◽  
Author(s):  
Danielle L. Jessen ◽  
David S. Bradley ◽  
Matthew L. Nilles

ABSTRACTNumerous Gram-negative pathogens rely upon type III secretion (T3S) systems to cause disease. Several small-molecule inhibitors of the type III secretion systems have been identified; however, few targets of these inhibitors have been elucidated. Here we report that 2,2′-thiobis-(4-methylphenol) (compound D), inhibits type III secretion inYersinia pestis,Yersinia pseudotuberculosis, andPseudomonas aeruginosa. YopD, a protein involved in the formation of the translocon and regulatory processes of the type III secretion system, appears to play a role in the inhibition of secretion by compound D. The use of compound D in T3S regulatory mutants demonstrated a difference in secretion inhibition in the presence and absence of calcium. Interestingly, compound D was effective only under conditions without calcium, indicating that a secretion-active needle structure may be necessary for compound D to inhibit secretion.

2016 ◽  
Vol 199 (4) ◽  
Author(s):  
Rebecca Johnson ◽  
Alexander Byrne ◽  
Cedric N. Berger ◽  
Elizabeth Klemm ◽  
Valerie F. Crepin ◽  
...  

ABSTRACT Strains of the various Salmonella enterica serovars cause gastroenteritis or typhoid fever in humans, with virulence depending on the action of two type III secretion systems (Salmonella pathogenicity island 1 [SPI-1] and SPI-2). SptP is a Salmonella SPI-1 effector, involved in mediating recovery of the host cytoskeleton postinfection. SptP requires a chaperone, SicP, for stability and secretion. SptP has 94% identity between S. enterica serovar Typhimurium and S. Typhi; direct comparison of the protein sequences revealed that S. Typhi SptP has numerous amino acid changes within its chaperone-binding domain. Subsequent comparison of ΔsptP S. Typhi and S. Typhimurium strains demonstrated that, unlike SptP in S. Typhimurium, SptP in S. Typhi was not involved in invasion or cytoskeletal recovery postinfection. Investigation of whether the observed amino acid changes within SptP of S. Typhi affected its function revealed that S. Typhi SptP was unable to complement S. Typhimurium ΔsptP due to an absence of secretion. We further demonstrated that while S. Typhimurium SptP is stable intracellularly within S. Typhi, S. Typhi SptP is unstable, although stability could be recovered following replacement of the chaperone-binding domain with that of S. Typhimurium. Direct assessment of the strength of the interaction between SptP and SicP of both serovars via bacterial two-hybrid analysis demonstrated that S. Typhi SptP has a significantly weaker interaction with SicP than the equivalent proteins in S. Typhimurium. Taken together, our results suggest that changes within the chaperone-binding domain of SptP in S. Typhi hinder binding to its chaperone, resulting in instability, preventing translocation, and therefore restricting the intracellular activity of this effector. IMPORTANCE Studies investigating Salmonella pathogenesis typically rely on Salmonella Typhimurium, even though Salmonella Typhi causes the more severe disease in humans. As such, an understanding of S. Typhi pathogenesis is lacking. Differences within the type III secretion system effector SptP between typhoidal and nontyphoidal serovars led us to characterize this effector within S. Typhi. Our results suggest that SptP is not translocated from typhoidal serovars, even though the loss of sptP results in virulence defects in S. Typhimurium. Although SptP is just one effector, our results exemplify that the behavior of these serovars is significantly different and genes identified to be important for S. Typhimurium virulence may not translate to S. Typhi.


2011 ◽  
Vol 79 (11) ◽  
pp. 4322-4331 ◽  
Author(s):  
Yue Zhang ◽  
Galina Romanov ◽  
James B. Bliska

ABSTRACTYersinia pseudotuberculosisis a Gram-negative bacterial pathogen. Virulence inY. pseudotuberculosisrequires the plasmid-encoded Ysc type III secretion system (T3SS), which functions to translocate a set of effectors called Yops into infected host cells. The effectors function to antagonize phagocytosis (e.g., YopH) or to induce apoptosis (YopJ) in macrophages infected withY. pseudotuberculosis. Additionally, when antiphagocytosis is incomplete andY. pseudotuberculosisis internalized by macrophages, the bacterium can survive in phagosomes. Previous studies have shown that delivery of effectors into host cells occurs efficiently whenYersiniais extracellular. However, it is not clear whether the T3SS can be utilized by intracellularY. pseudotuberculosisto translocate Yops. This possibility was investigated here usingY. pseudotuberculosisstrains that express YopJ or YopH under the control of an inducible promoter. Bone marrow-derived murine macrophages were infected with these strains under conditions that prevented the survival of extracellular bacteria. Effector translocation was detected by measuring apoptosis or the activities of Yop-β-lactamase fusion proteins. Results showed that macrophages underwent apoptosis when YopJ expression was induced prior to phagocytosis, confirming that delivery of this effector prior to or during uptake is sufficient to cause cell death. However, macrophages also underwent apoptosis when YopJ was ectopically expressed after phagocytosis; furthermore, expression of the translocator YopB from intracellular bacteria also resulted in increased cell death. Analysis by microscopy showed that translocation of ectopically expressed YopH- or YopJ-β-lactamase fusions could be correlated with the presence of viableY. pseudotuberculosisin macrophages. Collectively, our results suggest that the Ysc T3SS ofY. pseudotuberculosiscan function within macrophage phagosomes to translocate Yops into the host cytosol.


2003 ◽  
Vol 71 (10) ◽  
pp. 5892-5899 ◽  
Author(s):  
Céline Pujol ◽  
James B. Bliska

ABSTRACT Yersinia pestis, the agent of plague, has arisen from a less virulent pathogen, Yersinia pseudotuberculosis, by a rapid evolutionary process. Although Y. pestis displays a large number of virulence phenotypes, it is not yet clear which of these phenotypes descended from Y. pseudotuberculosis and which were acquired independently. Y. pestis is known to replicate in macrophages, but there is no consensus in the literature on whether Y. pseudotuberculosis shares this property. We investigated whether the ability to replicate in macrophages is common to Y. pestis and Y. pseudotuberculosis or is a unique phenotype of Y. pestis. We also examined whether a chromosomal type III secretion system (TTSS) found in Y. pestis is present in Y. pseudotuberculosis and whether this system is important for replication of Yersinia in macrophages. A number of Y. pestis and Y. pseudotuberculosis strains of different biovars and serogroups, respectively, were tested for the ability to replicate in primary murine macrophages. Two Y. pestis strains (EV766 and KIM10+) and three Y. pseudotuberculosis strains (IP2790c, IP2515c, and IP2666c) were able to replicate in macrophages with similar efficiencies. Only one of six strains tested, the Y. pseudotuberculosis YPIII(p−) strain, was defective for intracellular replication. Thus, the ability to replicate in macrophages is conserved in Y. pestis and Y. pseudotuberculosis. Our results also indicate that a homologous TTSS is present on the chromosomes of Y. pestis and Y. pseudotuberculosis and that this secretion system is not required for replication of these bacteria in macrophages.


2014 ◽  
Vol 82 (10) ◽  
pp. 4390-4404 ◽  
Author(s):  
Wei Sun ◽  
Shilpa Sanapala ◽  
Jeremy C. Henderson ◽  
Shandiin Sam ◽  
Joseph Olinzock ◽  
...  

ABSTRACTHere, we constructed aYersinia pseudotuberculosismutant strain with arabinose-dependent regulated and delayed shutoff ofcrpexpression (araCPBADcrp) and replacement of themsbBgene with theEscherichia colimsbBgene to attenuate it. Then, we inserted theasdmutation into this construction to form χ10057 [Δasd-206ΔmsbB868::PmsbBmsbB(EC)ΔPcrp21::TTaraCPBADcrp] for use with a balanced-lethal Asd-positive (Asd+) plasmid to facilitate antigen synthesis. A hybrid protein composed of YopE (amino acids [aa]1 to 138) fused with full-length LcrV (YopENt138-LcrV) was synthesized in χ10057 harboring an Asd+plasmid (pYA5199,yopENt138-lcrV) and could be secreted through a type III secretion system (T3SS)in vitroandin vivo. Animal studies indicated that mice orally immunized with χ10057(pYA5199) developed titers of IgG response to whole-cell lysates ofY. pestis(YpL) and subunit LcrV similar to those seen with χ10057(pYA3332) (χ10057 plus an empty plasmid). However, only immunization of mice with χ10057(pYA5199) resulted in a significant secretory IgA response to LcrV. χ10057(pYA5199) induced a higher level of protection (80% survival) against intranasal (i.n.) challenge with ∼240 median lethal doses (LD50) (2.4 × 104CFU) ofY. pestisKIM6+(pCD1Ap) than χ10057(pYA3332) (40% survival). Splenocytes from mice vaccinated with χ10057(pYA5199) produced significant levels of gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-17 (IL-17) after restimulation with LcrV and YpL antigens. Our results suggest that it is possible to use an attenuatedY. pseudotuberculosisstrain delivering the LcrV antigen via the T3SS as a potential vaccine candidate against pneumonic plague.


2008 ◽  
Vol 76 (9) ◽  
pp. 3911-3923 ◽  
Author(s):  
Sarit Lilo ◽  
Ying Zheng ◽  
James B. Bliska

ABSTRACT Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1β (IL-1β) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1β was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1β following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1β were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.


Microbiology ◽  
2020 ◽  
Author(s):  
Keke Fei ◽  
Hong-Jun Chao ◽  
Yangbo Hu ◽  
Matthew S. Francis ◽  
Shiyun Chen

The CpxRA two-component regulatory system and the Rcs phosphorelay system are both employed by the Enterobacteriaceae family to preserve bacterial envelope integrity and function when growing under stress. Although both systems regulate several overlapping physiological processes, evidence demonstrating a molecular connection between Cpx and Rcs signalling outputs is scarce. Here, we show that CpxR negatively regulates the transcription of the rcsB gene in the Rcs phosphorelay system in Yersinia pseudotuberculosis . Interestingly, transcription of rcsB is under the control of three promoters, which were all repressed by CpxR. Critically, synthetic activation of Cpx signalling through mislocalization of the NlpE lipoprotein to the inner membrane resulted in an active form of CpxR that repressed activity of rcsB promoters. On the other hand, a site-directed mutation of the phosphorylation site at residue 51 in CpxR generated an inactive non-phosphorylated variant that was unable to regulate output from these rcsB promoters. Importantly, CpxR-mediated inhibition of rcsB transcription in turn restricted activation of the Ysc-Yop type III secretion system (T3SS). Moreover, active CpxR blocks zinc-mediated activation of Rcs signalling and the subsequent activation of lcrF transcription. Our results demonstrate a novel regulatory cascade linking CpxR-RcsB-LcrF to control production of the Ysc-Yop T3SS.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Kerri-Lynn Sheahan ◽  
Ralph R. Isberg

ABSTRACTThe type III secretion system (T3SS) is a highly conserved protein delivery system found in multiple Gram-negative pathogens, includingYersinia pseudotuberculosis. Most studies of Yersinia species type III intoxication of host cells have focused on the bacterial determinants that promote assembly and function of the secretion system. In this study, we performed a pooled RNA interference (RNAi) screen to identify mammalian host proteins required for the cytotoxic effects associated with the Yersinia translocated substrate YopE, a GTPase-activating protein (GAP) that inactivates the small Rho GTPases. Cell populations were positively selected for short hairpin RNAs (shRNAs) that interfere with YopE activity using a combination of fluorescence resonance energy transfer (FRET) and flow cytometry, and the degree of enrichment was determined by deep sequencing. Analysis of the candidates identified by the enrichment process revealed that many were important for the initial step of Y. pseudotuberculosis T3SS function, YopB/D pore formation. These candidates included shRNA that depleted downstream effectors of RhoA signaling, coated pit formation, and receptors involved in cell signaling, including the chemokine receptor CCR5 (chemokine [C-C motif] receptor 5). Depletion of CCR5 in 293T cells yielded a defect in YopB/D pore formation and effector translocation, while both phenotypes could be complemented by overexpression of CCR5 protein. Yop effector translocation was also decreased in isolated primary phagocytic cells from aCcr5−/−knockout mouse. We postulate that CCR5 acts to promote translocation by modulating cytoskeletal activities necessary for proper assembly of the YopB/D translocation pore. Overall, this study presents a new approach to investigating the contribution of the host cell to T3SS in Y. pseudotuberculosis.IMPORTANCEMany Gram-negative bacteria require type III secretion systems (T3SS) for host survival, making these highly specialized secretion systems good targets for antimicrobial agents. After the bacterium binds to host cells, T3SS deposit proteins into the cytosol of host cells through a needle-like appendage and a protein translocon channel. Translocation of proteins via this system is highly regulated, and the contribution of the host cell in promoting assembly and insertion of the channel into the plasma membrane, folding of the bacterial proteins, and trafficking of these substrates are all poorly characterized events. In this study, we identified host cell proteins important for activity of YopE, aYersinia pseudotuberculosisT3SS-delivered protein. The results demonstrate that insertion and assembly of the translocon are complex processes, requiring a variety of membrane trafficking and cytoskeletal processes, as well as a surprising role for cell surface signaling molecules in supporting proper function.


2013 ◽  
Vol 58 (2) ◽  
pp. 1118-1126 ◽  
Author(s):  
Miles C. Duncan ◽  
Weng Ruh Wong ◽  
Allison J. Dupzyk ◽  
Walter M. Bray ◽  
Roger G. Linington ◽  
...  

ABSTRACTThe type III secretion system (T3SS) is a bacterial appendage used by dozens of Gram-negative pathogens to subvert host defenses and cause disease, making it an ideal target for pathogen-specific antimicrobials. Here, we report the discovery and initial characterization of two related natural products with T3SS-inhibitory activity that were derived from a marine actinobacterium. Bacterial extracts containing piericidin A1 and the piericidin derivative Mer-A 2026B inhibitedYersinia pseudotuberculosisfrom triggering T3SS-dependent activation of the host transcription factor NF-κB in HEK293T cells but were not toxic to mammalian cells. As theYersiniaT3SS must be functional in order to trigger NF-κB activation, these data indicate that piericidin A1 and Mer-A 2026B block T3SS function. Consistent with this, purified piericidin A1 and Mer-A 2026B dose-dependently inhibited translocation of theY. pseudotuberculosisT3SS effector protein YopM inside CHO cells. In contrast, neither compound perturbed bacterial growthin vitro, indicating that piericidin A1 and Mer-A 2026B do not function as general antibiotics inYersinia. In addition, whenYersiniawas incubated under T3SS-inducing culture conditions in the absence of host cells, Mer-A 2026B and piericidin A1 inhibited secretion of T3SS cargo as effectively as or better than several previously described T3SS inhibitors, such as MBX-1641 and aurodox. This suggests that Mer-A 2026B and piericidin A1 do not block type III secretion by blocking the bacterium-host cell interaction, but rather inhibit an earlier stage, such as T3SS needle assembly. In summary, the marine-derived natural products Mer-A 2026B and piericidin A1 possess previously uncharacterized activity against the bacterial T3SS.


2002 ◽  
Vol 184 (21) ◽  
pp. 5966-5970 ◽  
Author(s):  
Sarah E. Burr ◽  
Katja Stuber ◽  
Thomas Wahli ◽  
Joachim Frey

ABSTRACT Aeromonas salmonicida subsp. salmonicida, the etiological agent of furunculosis, is an important fish pathogen. We have screened this bacterium with a broad-host-range probe directed against yscV, the gene that encodes the archetype of a highly conserved family of inner membrane proteins found in every known type III secretion system. This has led to the identification of seven open reading frames that encode homologues to proteins functioning within the type III secretion systems of Yersinia species. Six of these proteins are encoded by genes comprising a virA operon. The A. salmonicida subsp. salmonicida yscV homologue, ascV, was inactivated by marker replacement mutagenesis and used to generate an isogenic ascV mutant. Comparison of the extracellular protein profiles from the ascV mutant and the wild-type strain indicates that A. salmonicida subsp. salmonicida secretes proteins via a type III secretion system. The recently identified ADP-ribosylating toxin AexT was identified as one such protein. Finally, we have compared the toxicities of the wild-type A. salmonicida subsp. salmonicida strain and the ascV mutant against RTG-2 rainbow trout gonad cells. While infection with the wild-type strain results in significant morphological changes, including cell rounding, infection with the ascV mutant has no toxic effect, indicating that the type III secretion system we have identified plays an important role in the virulence of this pathogen.


mBio ◽  
2011 ◽  
Vol 2 (6) ◽  
Author(s):  
A. Marijke Keestra ◽  
Maria G. Winter ◽  
Daisy Klein-Douwel ◽  
Mariana N. Xavier ◽  
Sebastian E. Winter ◽  
...  

ABSTRACTThe invasion-associated type III secretion system (T3SS-1) ofSalmonella entericaserotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasionin vitrobut required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responsesin vitroandin vivo.IMPORTANCESalmonella entericaserotype Typhimurium (S. Typhimurium) deploys a type III secretion system (T3SS-1) to induce intestinal inflammation and benefits from the ensuing host response, which enhances growth of the pathogen in the intestinal lumen. However, the mechanisms by which the T3SS-1 triggers inflammatory responses have not been resolved. Here we show that the T3SS-1 effector protein SipA induces NF-κB activation and intestinal inflammation by activating the NOD1/NOD2 signaling pathway. These data suggest that the T3SS-1 escalates innate responses through a SipA-mediated activation of pattern recognition receptors in the host cell cytosol.


Sign in / Sign up

Export Citation Format

Share Document