Development of a Multicriteria Assessment Model for Ranking Biomass Feedstock Collection and Transportation Systems

Author(s):  
Amit Kumar ◽  
Shahab Sokhansanj ◽  
Peter C. Flynn
2019 ◽  
Vol 11 (12) ◽  
pp. 3314 ◽  
Author(s):  
Wojciech Sałabun ◽  
Krzysztof Palczewski ◽  
Jarosław Wątróbski

The problem of sustainable city transport is a growing field of study, and will be addressed in this paper. With the rising significance of present transportation systems’ negative externalities on the environment, such as the unavoidable increase of air pollution levels, cities seek sustainable means of transport and reduction of combustion cars’ utilization. Moreover, improvements in the area of renewable energy sources have led to rising trends in sustainability, driving the usage and production of electric vehicles. Currently, there is an increasing tendency of looking for more sustainable transport solutions, especially in highly congested urban areas. It seems that in that case, electric bicycles can be a good option, as they yield more benefits in comparison to cars, especially combustion cars. In this paper, we identify an assessment model for the selection of the best electric bicycle for sustainable city transport by using incomplete knowledge. For this purpose, the Characteristic Objects METhod (COMET) is used. The COMET method, proven effective in the assessment of sustainable challenges, is a modern approach, utterly free of the rank reversal phenomenon. The evaluated model considers investigated multiple criteria and is independent of chosen alternatives in the criteria domain. Hence, it can be easily modified and extended for diverse sets of decisional variants. Moreover, the presented approach allows assessing alternatives under conditions of incomplete knowledge, where some data are presented as possible interval numbers.


2014 ◽  
Vol 6 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Rasa Džiugaitė-Tumėnienė ◽  
Vilūnė Lapinskienė

Researches on efficient energy supply in new buildings are significant for implementation of energy performance targets for buildings, aiming to increase energy efficiency as well as the share of renewable energy in the total balance of consumed energy and to reduce greenhouse gas emissions to the environment. Many studies suggest integrated assessment methods that combine building energy simulation and optimization methods. However, optimal solutions for case studies are based only on quantitative criteria (energy technical, environmental and economic). Therefore, such an approach is not sufficient to achieve the optimal building energy supply system in respect of the quantitative and qualitative criteria. The presented multicriteria assessment model for an energy supply system of a low energy house allows determining the optimal combination of technologies for a building energy supply system (BESS). Six variants of building constructions and fifteen combinations of BESS for each variant were analysed. Energy efficiency, environmental impact, economic rationality, comfort and system functionality were considered key criteria for optimal decision making. The results showed that the optimal solution for low energy and passive houses in Lithuania and other cold climate countries is the building envelope that corresponds to characteristics of energy efficiency class A+ and the BESS combination, consisting of a wood boiler and electricity from the national electricity grid. Mažaenergio pastato efektyvaus aprūpinimo energija tyrimai yra svarbūs įgyvendinant pastatų energinio naudingumo tikslus, siekiant padidinti energijos vartojimo efektyvumą ir atsinaujinančiųjų išteklių energijos dalį bendrajame suvartojamos energijos balanse, taip pat sumažinti šiltnamio efektą sukeliančių dujų emisijas. Atliekant tyrimus taikomi integruoto vertinimo metodai, siejantys pastato energinį modeliavimą ir optimizavimą, nustatantys racionalius sprendinius tik pagal kiekybinius kriterijus (energinius, techninius, ekologinius ir ekonominius). Tokio požiūrio nepakanka siekiant įdiegti racionalią pastato aprūpinimo energija sistemą kiekybinių ir kokybinių kriterijų atžvilgiu. Straipsnyje pateikiamas mažaenergio pastato aprūpinimo energija daugiatikslio vertinimo modelis, kuriuo remiantis iš pasirinktų šešių pastato konstrukcijų variantų ir jiems numatytų 15 PAES technologijų derinių nustatytas racionalus PAES technologijų derinys, vertinimo kriterijais imant energinį efektyvumą, poveikį aplinkai, ekonominį racionalumą, sukuriamą komfortą ir sistemos funkcionalumą. Tyrimo rezultatai parodė, kad, Lietuvoje ir panašaus klimato šalyse įgyvendinant mažaenergiams ir pasyviems vienbučiams namams keliamus reikalavimus, racionalus sprendinys yra pastato atitvaros, atitinkančios A+ energinio naudingumo klasės reikalavimus, su PAES deriniu, kurį sudaro biologinio kuro (malkų) katilas ir iš nacionalinių elektros tinklų tiekiama elektros energija.


2008 ◽  
Vol 100 (4) ◽  
pp. 601-611 ◽  
Author(s):  
A. Cazorla ◽  
I. De los Ríos ◽  
J. Merino ◽  
J.L. Alier

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohammad Khashayarfard ◽  
Habibollah Nassiri

Human error is one of the leading causes of accidents. Distraction, fatigue, poor visibility, speeding, and other such errors made by drivers can cause accidents. With the rapid advancements in automation technologies, transportation planners have strived to use Intelligent Transportation Systems (ITS) to minimize human error. In this study, the effect of Autonomous Vehicles (AVs) on the number of potential conflicts at two unsignalized intersections is investigated by using a microsimulation model in PTV Vissim software. For human-driven cars, the factor that is considered for calibration is driver distraction mainly caused by reading or writing text messages on a cellphone while driving. This factor can be estimated using driving simulators. In this paper, five different scenarios were defined for simulation, in addition to the primary state, according to the different market penetration rates of AVs in Vissim. Safety assessment was performed by the Surrogate Safety Assessment Model (SSAM) using Time to Collision (TTC) and Deceleration Rate to Avoid Crashes (DRAC) indicators to determine the number of accidents. It was concluded that the presence of 100% of AVs could reduce the potential for accidents by up to 93%.


2018 ◽  
Vol 10 (9) ◽  
pp. 3240 ◽  
Author(s):  
Santoso Wibowo ◽  
Srimannarayana Grandhi

This paper presented a multicriteria assessment model for evaluating the performance of combined heat and power systems. Interval-valued intuitionistic fuzzy numbers were used for representing the subjective and imprecise assessments of the decision maker in evaluating the relative importance of the criteria, and the performance of individual combined heat and power systems. An effective algorithm was developed based on the concept of ideal solutions for calculating the overall performance index, for each combined heat and power system across all criteria. An example was presented to demonstrate the applicability of the multicriteria assessment model, for dealing with real world combined heat and power system performance evaluation problems.


2019 ◽  
Vol 0 (4) ◽  
pp. 83-91
Author(s):  
N. N. Malyar ◽  
A. V. Polishchuk ◽  
V. V. Polishchuk ◽  
M. N. Sharkadi

Sign in / Sign up

Export Citation Format

Share Document