scholarly journals Investigation of Biofilm Formation in Clinical Isolates of Staphylococcus aureus

Author(s):  
James E. Cassat ◽  
Chia Y. Lee ◽  
Mark S. Smeltzer
2021 ◽  
Author(s):  
Hossein Jafari Soghondicolaei ◽  
Mohammad Ahanjan ◽  
Mehrdad Gholami ◽  
Bahman Mirzaei ◽  
Hamid Reza Goli

Abstract Biofilm production increases Staphylococcus aureus resistance to antibiotics and also host defense mechanisms. The current study aims to evaluate the biofilm formation by S. aureus and to determine the prevalence of fibronectin-binding protein genes, also its correlation with drug resistance. In this study, 100 clinical isolates of S. aureus were collected. The antibiotic susceptibility pattern of the isolates was evaluated by the disk agar diffusion method. The ability of biofilm formation in the studied isolates was also determined by microplate colorimetric assay. Then, all isolates were screened by polymerase chain reaction for the fnbA and fnbB genes. Out of 100 clinical isolates of S. aureus, the highest and lowest antibiotic resistance rates were against penicillin (94%) and vancomycin (6%). Thirty-two cases were found to be multi-drug resistant (MDR) among the all strains. The ability of biofilm production was observed in 89% of the isolates. The PCR results showed that the prevalence of fnbA and fnbB genes were 91% and 17%, respectively. Moreover, 100% and 21.8% of the MDR strains harbored the fnbA and fnbB genes respectively. The ability to form biofilm in MDR isolates of S. aureus is more than non-MDR isolates, especially fnbA positive ones. As the bacteria in the biofilm are difficult to kill by antibiotics, attention to the removal or control of the biofilm production seems to be necessary.


2008 ◽  
Vol 32 (1) ◽  
pp. 68-72 ◽  
Author(s):  
An Sung Kwon ◽  
Gwang Chul Park ◽  
So Yeon Ryu ◽  
Dong Hoon Lim ◽  
Dong Yoon Lim ◽  
...  

2020 ◽  
Vol 73 (5) ◽  
pp. 261-266
Author(s):  
Sahra Kırmusaoğlu ◽  
Havva Kaşıkçı

AimsStaphylococcus aureus (S. aureus) is a life-threatening pathogen with high morbidity and mortality rates which causes nosocomial and community-acquired infections. Biofilm, considered to be a common virulence factor for pathogens, plays a significant role in recurrent and untreatable infections. Biofilm formation of S. aureus is mediated by synthesis of either poly-N-acetylglucosamine in an ica-dependent manner or surface proteins in an ica-independent manner. In some cases treatment is impossible and recurrent. In this study, ica-dependent biofilm-producing S. aureus isolates were detected and the anti-biofilm effect of ascorbic acid against biofilm formation of isolates was investigated.MethodsA total of 21 methicillin-sensitive S. aureus (MSSA) clinical isolates stored in our bacterial stock were used to detect ica-dependent biofilm-producing MSSA isolates. The anti-biofilm study was undertaken with three ica-dependent biofilm-producing isolates (MSSA2–4) and ATCC 29213 (MSSA1). Biofilms and the anti-biofilm effect of ascorbic acid were detected using the microtitre plate (MtP) method. 16S-rRNA, nuc, icaA and icaD genes and expression levels of icaA and icaD of isolates were detected by RT-PCR.ResultsThe minimum inhibitory concentrations (MICs) of ascorbic acid prevented biofilm formation of MSSA1 and MSSA3. Also, 1/2 MIC of ascorbic acid prevented biofilm formation of MSSA3. It was observed that biofilm formation decreased with increased concentration. There was no significant increase in ica gene expression of MSSA1 and MSSA2. Expression of icaA and icaD of MSSA3 decreased 13% and 38%, respectively. Expression of icaA in MSSA4 decreased 12%.ConclusionThe results of our study show that ascorbic acid can be used as an anti-biofilm agent to prevent biofilm formation of S. aureus and thus biofilm-related infections.


2017 ◽  
Vol 8 (4) ◽  
pp. 540-546
Author(s):  
T. V. Sklyar ◽  
K. V. Lavrentievа ◽  
Y. A. Alyonkina ◽  
A. M. Kolomoets ◽  
А. І. Vinnikov

The problem of nosocomial infections is considered in connection with more frequent formation and wide distribution in clinical practice of new strains of hospital bacteria that have a cross-resistence to antibacterial drugs. The nosocomial agents were isolated from wounds and identified as Staphylococcus aureus and Pseudomonas aeruginosa. 72.0% of S. aureus strains and 61.5% of P. aeruginosa clinical isolates had the capability of forming biofilms. The sensitivity to antibiotics of all isolated strains was investigated with tne agar diffusion test. This method showed that all strains of S. aureus with the capability to form biofilms had resistence to erythromycin, gentamycin, ciprofloxacin and levofloxacin. The had the greatest sensitivity to klindamycin (90.3%), vancomycin (80.6%) and gatifloxacin (80.6% cultures). The strains of S. aureus with the capability to form biofilms were more resistent to antibiotics than strains of S. aureus without such properties. Only cefotaxim suppressed the growth of 75.0% of strains of staphylococci. All isolated strains of S. aureus without the capability to form biofilms were sensitive to doxycyclin, gentamycin, ciprofloxacin, levofloxacin and klindamycin. All clinical isolates of P. aeruginosa with capability to form biofilms had resistence to ampicillin, gentamycin, imipenem, cefotaxime and ceftriaxone. They were most sensitive (75.0%) to piperacillin and cefoperazone/sulbactam. The strains of P. aeruginosa without the capability to form biofilms kept the resistence to gentamycin, imipenem and ceftriaxone. They showed the greatest sensitivity (75.0%) to ciprofloxacin (80.0% isolates) and also to amikacin, ampicillin, meropenem, norfloxacin and cefotaxime (60.0% cultures). We investigated the minimum inhibitory concentrations of gentamycin and ciprofloxacin, which appeared higher for P. aeruginosa than for S. aureus. The most effective disinfectant against all isolated nosocomial agents without the capacity for biofilm formation was “Desactin” in a concentration 0.1% or 0.2%. For strains of staphylococci with this capability, the efficiency of “Desactin” went down by 9.7%. The best biocide effect against the strains of P. aeruginosa with the capability of forming biofilms was shown by 0.1% solution of “Neochlorine tabs”, which suppressed the growth of 75.0% of tested cultures. As a result, we detected a direct relationship between resistance to antibiotics and disinfectants and the capacities for biofilm formation among the nosocomial agents S. aureus and P. aeruginosa. 


2017 ◽  
Vol 9 (3) ◽  
pp. 93 ◽  
Author(s):  
Pradyot Prakash ◽  
AshishKumar Singh ◽  
Arvind Achra ◽  
GyanPrakash Singh ◽  
Arghya Das ◽  
...  

Microbiology ◽  
2008 ◽  
Vol 154 (11) ◽  
pp. 3480-3490 ◽  
Author(s):  
Leonardo Rocchetto Coelho ◽  
Raquel Rodrigues Souza ◽  
Fabienne Antunes Ferreira ◽  
Márcia Aparecida Guimarães ◽  
Bernadete Teixeira Ferreira-Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document