EBMT Registry of Nonhematopoietic Stem Cells and Regenerative Therapy (Cellular and Engineered Tissue Therapies in Europe)

Author(s):  
Helen Baldomero ◽  
Ivan Martin ◽  
Katarina Le Blanc ◽  
Jan Cornelissen ◽  
Jakob Passweg ◽  
...  
Hepatology ◽  
2013 ◽  
Vol 58 (3) ◽  
pp. 1133-1142 ◽  
Author(s):  
Akihiro Seki ◽  
Yoshio Sakai ◽  
Takuya Komura ◽  
Alessandro Nasti ◽  
Keiko Yoshida ◽  
...  

2011 ◽  
Vol 17 (1-2) ◽  
pp. 93-106 ◽  
Author(s):  
Ludovic Zimmerlin ◽  
Albert D. Donnenberg ◽  
J. Peter Rubin ◽  
Per Basse ◽  
Rodney J. Landreneau ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
D. J. Griffon ◽  
J. Cho ◽  
J. R. Wagner ◽  
C. Charavaryamath ◽  
J. Wei ◽  
...  

Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs afterin vivoimplantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs) conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression ofSox2,Oct4, andNanogwas 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
GE TAO ◽  
Elzbieta Klysik ◽  
Yuka Morikawa ◽  
James F Martin

Myocardial infarction is the leading cause of morbidity and mortality in the United States. Compromised myocardial function, due to the lack of self-renewal capacity in mature hearts, is a major reason for heart failure. Available therapies can only ameliorate, but not reverse the loss of functional myocardium. With heart transplantation as the only available cure, design of an effective regenerative therapy has become imperative for cardiovascular research. To repopulate the heart with de novo cardiomyocytes, most attempts have been based on the transplantation of cardiac, non-cardiac stem cells or their derivatives, however a more profound knowledge of stem cells is required for achieving significant progress. Meanwhile, triggering endogenous regenerative capacity is a compelling strategy for cardiac repair. It has been reported that proliferation of pre-existing cardiomyocytes strongly contributes to regeneration. Thus, efforts have been made to reintroduce mature cardiomyocytes into mitotic cycle. The mechanisms underlying the proliferation of cardiomyocytes during development and their homeostasis during adulthood are not fully understood, but likely require tight regulation of transcription factors in specific cell types. We have previously shown that the mouse Hippo kinase cascade is a major heart-size control pathway during development. In addition, activation of Yap, a transcriptional cofactor inhibited by Hippo, by genetically disrupting Hippo signaling is sufficient to induce juvenile and adult myocardial regeneration after surgery-induced myocardial infarction. Here we identified the paired-like homeodomain transcription factor 2 (pitx2) as a potential downstream target and cofactor of Yap in mouse heart. Our data indicates that Pitx2 expression is induced by myocardial injury, and is required for neonatal myocardial regeneration in a postnatal day 1 (P1) apex resection model. Further studies show that over-expression of pitx2 in adult cardiomyocytes is sufficient to promote the restoration of myocardial structure and function after myocardial infarction. Together, we show that pitx2 is a new manipulator of myocardial regeneration and could serve as a novel therapeutic target in cardiac regenerative therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Aofei Yang ◽  
Chaochao Yu ◽  
Qilin Lu ◽  
Hao Li ◽  
Zhanghua Li ◽  
...  

Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.


2019 ◽  
Vol 370 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Shen Cheng ◽  
Susheel Kumar Nethi ◽  
Sneha Rathi ◽  
Buddhadev Layek ◽  
Swayam Prabha

Sign in / Sign up

Export Citation Format

Share Document