Analysis of Acquired Genomic Copy Number Aberrations and Regions of Loss of Heterozygosity in Acute Myelogenous Leukemia Genomes Using Affymetrix SNP 6.0 Arrays and Supporting Software Tools

Author(s):  
Peter D. Ouillette ◽  
Kerby A. Shedden ◽  
Cheng Li ◽  
Sami N. Malek
Blood ◽  
2010 ◽  
Vol 116 (23) ◽  
pp. 4958-4967 ◽  
Author(s):  
Brian Parkin ◽  
Harry Erba ◽  
Peter Ouillette ◽  
Diane Roulston ◽  
Anjali Purkayastha ◽  
...  

Abstract Genomic aberrations are of predominant importance to the biology and clinical outcome of patients with acute myelogenous leukemia (AML), and conventional karyotype-based risk classifications are routinely used in clinical decision making in AML. One of the known limitations of cytogenetic analysis is the inability to detect genomic abnormalities less than 5 Mb in size, and it is currently unclear whether overcoming this limitation with high-resolution genomic single-nucleotide polymorphism (SNP) array analysis would be clinically relevant. Furthermore, given the heterogeneity of molecular mechanisms/aberrations that underlie the conventional karyotype-based risk classifications, it is likely that further refinements in genomic risk prognostication can be achieved. In this study, we analyzed flow cytometer–sorted, AML blast-derived, and paired, buccal DNA from 114 previously untreated prospectively enrolled AML patients for acquired genomic copy number changes and loss of heterozygosity using Affymetrix SNP 6.0 arrays, and we correlated genomic lesion load and specific chromosomal abnormalities with patient survival. Using multivariate analyses, we found that having ≥ 2 genomic lesions detected through SNP 6.0 array profiling approximately doubles the risk of death when controlling for age- and karyotype-based risk. Finally, we identified an independent negative prognostic impact of p53 mutations, or p53 mutations and 17p-loss of heterozygosity combined on survival in AML.


2017 ◽  
Vol 78 ◽  
pp. 128
Author(s):  
Michelle J. Hickey ◽  
Nicole Valenzuela ◽  
Qiuheng Zhang ◽  
Ping Ge Takemura ◽  
Elaine F. Reed ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 3051-3061 ◽  
Author(s):  
Peter Ouillette ◽  
Roxane Collins ◽  
Sajid Shakhan ◽  
Jinghui Li ◽  
Edward Peres ◽  
...  

Abstract Genomic aberrations are of predominant importance to the biology and clinical outcome of patients with chronic lymphocytic leukemia (CLL), and FISH-based genomic risk classifications are routinely used in clinical decision making in CLL. One of the known limitations of CLL FISH is the inability to comprehensively interrogate the CLL genome for genomic changes. In an effort at overcoming the existing limitations in CLL genome analysis, we have analyzed high-purity DNA isolated from FACS-sorted CD19+ cells and paired CD3+ or buccal cells from 255 patients with CLL for acquired genomic copy number aberrations (aCNAs) with the use of ultra-high-density Affymetrix SNP 6.0 arrays. Overall, ≥ 2 subchromosomal aCNAs were found in 39% (100 of 255) of all cases analyzed, whereas ≥ 3 subchromosomal aCNAs were detected in 20% (50 of 255) of cases. Subsequently, we have correlated genomic lesion loads (genomic complexity) with the clinical outcome measures time to first therapy and overall survival. With the use of multivariate analyses incorporating the most important prognostic factors in CLL together with SNP 6.0 array–based genomic lesion loads at various thresholds, we identify elevated CLL genomic complexity as an independent and powerful marker for the identification of patients with aggressive CLL and short survival.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 165-165
Author(s):  
Sami Malek ◽  
Peter Ouillette ◽  
Yin Wang ◽  
Yan Liu ◽  
Whitney Wright ◽  
...  

Abstract Abstract 165 Genomic aberrations are of dominant importance to the biology and clinical outcome of patients with acute myelogenous leukemia (AML). To further our understanding of such aberrations in AML, we analyzed DNA from highly purified AML blasts and paired buccal cells from 95 patients for subchromosomal copy number changes and allele identities using ultra-high-density Affymetrix SNP 6.0 array-based genomic profiling. A total of 358 somatically acquired copy number changes were detected in 95 AML genomes. We detected 16 losses and 22 gains of entire chromosomes, 285 subchromosomal losses and 35 subchromosomal gains. No recurrent high-level amplifications or recurrent homozygous deletions were identified. Eight of the 34 AML cases (24%) with normal karyotype each had one lesion detected through 6.0 array profiling, all but one of which was less than 4Mb in length. Focusing on microdeletions as potential indicators of the locations of novel tumor suppressor genes or genes with importance to AML biology, we identified 60 deletions that were less than 1 Mb in length and 158 deletions of less than 5 Mb, the vast majority of which were undetectable by conventional cytogenetics. Through fine mapping of microdeletions on 17q, we identified Neurofibromin 1 (NF1) null states due to mutations or absent expression in ∼7% of AML. NF1 mutations were present in the hematopoetic stem cell compartment (CD34+/CD38- cell population) and siRNA-mediated NF1 suppression using recombinant lentiviruses significantly increased colony formation of primary AML blasts in methylcellulose. Further, AML blasts without functional NF1 displayed sensitivity to rapamycin-induced apoptosis, thus identifying a dependence on mTOR signaling for survival. As an additional validation of using microdeletions to guide pathogenetic gene discovery, we identified deletions involving RUNX1, IRF8, Core Binding Factor Beta (CBFB) and Casitas B-cell lymphoma B (CBLB), genes known to be altered in AML. IRF8 expression was found to be absent in ∼30% of all AML but sequencing of all coding exons of IRF8 of 48 AML cases did not disclose somatically acquired mutations. In summary, this comprehensive description of subchromosomal copy number changes and microdeletions in adult AML substantially adds to our knowledge of the pathological anatomy of the AML genome and should inform future searches for novel genes with importance to AML biology. Disclosures: Malek: Cephalon: Honoraria, Speakers Bureau; Celgene: Honoraria, Speakers Bureau; Affymetrix: Research Funding. Erba:Lilly: Research Funding; Antisoma: Research Funding; Wyeth: Research Funding; Cephalon: Honoraria, Research Funding; MGI Pharma: Honoraria; Pharmion: Honoraria; Celgene: Honoraria; BMS: Honoraria; Novartis: Honoraria, Research Funding; Genzyme: Consultancy, Honoraria, Research Funding; Gemin-X: Research Funding; Kanisa: Research Funding.


2009 ◽  
Vol 17 (8) ◽  
pp. 987-1000 ◽  
Author(s):  
Rachael Thomas ◽  
Victor E. Valli ◽  
Peter Ellis ◽  
Jerold Bell ◽  
Elinor K. Karlsson ◽  
...  

1999 ◽  
Vol 23 (3) ◽  
pp. 307-310 ◽  
Author(s):  
Michiaki Koike ◽  
Taizo Tasaka ◽  
S. Spira ◽  
Nobuyoshi Tsuruoka ◽  
H. Phillip Koeffler

2006 ◽  
Vol 34 (4) ◽  
pp. 390-396 ◽  
Author(s):  
Y Yaginuma ◽  
J Unotoro ◽  
H Kamiyama ◽  
Y Ishido ◽  
S Kasamaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document