Development of Hematopoietic Stem and Progenitor Cells from Mouse Embryonic Stem Cells, In Vitro, Supported by Ectopic Human HOXB4 Expression

Author(s):  
Sandra Pilat ◽  
Sebastian Carotta ◽  
Hannes Klump
2007 ◽  
Vol 100 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Qing-Jun Zhou ◽  
Li-Xin Xiang ◽  
Jian-Zhong Shao ◽  
Ruo-Zhen Hu ◽  
Yong-Liang Lu ◽  
...  

Circulation ◽  
2006 ◽  
Vol 113 (18) ◽  
pp. 2229-2237 ◽  
Author(s):  
Xi-Min Guo ◽  
Yun-Shan Zhao ◽  
Hai-Xia Chang ◽  
Chang-Yong Wang ◽  
Ling-Ling E ◽  
...  

Thyroid ◽  
2010 ◽  
Vol 20 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Ningyi Jiang ◽  
Yingying Hu ◽  
Xiongying Liu ◽  
Yanfeng Wu ◽  
Hong Zhang ◽  
...  

2016 ◽  
Vol 25 (8) ◽  
pp. 648-659 ◽  
Author(s):  
William D'Angelo ◽  
Dhiraj Acharya ◽  
Ruoxing Wang ◽  
Jundi Wang ◽  
Chandan Gurung ◽  
...  

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


2019 ◽  
Author(s):  
Aseda Tena ◽  
Yuxiang Zhang ◽  
Nia Kyritsis ◽  
Anne Devorak ◽  
Jeffrey Zurita ◽  
...  

ABSTRACTMild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes (“RDC-genes”) that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome wide DSB identification approach that captures DSBs genome-wide via their ability to join to specific genomic Cas9/sgRNA-generated bait DSBs. In XRCC4/p53-deficient ES cells, we detected 7 RDCs, which were in genes, with two RDCs being robust. In contrast, in NPCs derived from these ES cell lines, we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ES cells provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.SIGNIFICANCE STATEMENTWe previously discovered a set of long neural genes susceptible to frequent DNA breaks in primary mouse brain progenitor cells. We termed these genes RDC-genes. RDC-gene breakage during brain development might alter neural gene function and contribute to neurological diseases and brain cancer. To provide an approach to characterize the unknown mechanism of neural RDC-gene breakage, we asked whether RDC-genes appear in neural progenitors differentiated from embryonic stem cells in culture. Indeed, robust RDC-genes appeared in neural progenitors differentiated in culture and many overlapped with robust RDC-genes in primary brain progenitors. These studies indicate that in vitro development of neural progenitors provides a model system for elucidating how RDC-genes are formed.


2015 ◽  
Vol 13 (1) ◽  
pp. 720-730 ◽  
Author(s):  
LIPING OU ◽  
LIAOQIONG FANG ◽  
HEJING TANG ◽  
HAI QIAO ◽  
XIAOMEI ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document