Calculated Golf Ball Performance Based on Measured Visco-hyperelastic Material Properties (P5)

2008 ◽  
pp. 11-18 ◽  
Author(s):  
Khairul Ismail ◽  
Bill Stronge
2021 ◽  
pp. 100035
Author(s):  
Poorya Chavoshnejad ◽  
Guy K. German ◽  
Mir Jalil Razavi

PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0177088 ◽  
Author(s):  
Gloria Casaroli ◽  
Fabio Galbusera ◽  
René Jonas ◽  
Benedikt Schlager ◽  
Hans-Joachim Wilke ◽  
...  

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Hyeon Lee ◽  
William D. Campbell ◽  
Kelcie M. Theis ◽  
Margaret E. Canning ◽  
Hannah Y. Ennis ◽  
...  

Abstract Fresh and frozen cartilage samples of the fetlock, carpus, and stifle were collected from 12 deceased horses. Half were measured immediately following extraction, and half were frozen for seven days and then measured. Seven indentations (various normalized displacements) were implemented with an indention rate of 0.1 mm/s. Solid phase aggregate modulus (Es), hyperelastic material constant (α), and fluid load fraction (F′) of equine articular cartilage were assessed using the Ogden hyperelastic model. The properties were statistically compared in various joints (fetlock, carpus, and stifle), and between fresh and frozen samples using various statistical models. There was no statistical difference between the fetlock and carpus in the aggregate modulus (p = 0.5084), while both were significantly different from the stifle (fetlock: p = 0.0017 and carpus: p = 0.0406). For the hyperelastic material constant, no statistical differences between joints were observed (p = 0.3310). For the fluid load fraction, the fetlock and stifle comparison showed a difference (p = 0.0333), while the carpus was not different from the fetlock (p = 0.1563) or stifle (p = 0.3862). Comparison between the fresh and frozen articular cartilage demonstrated no significant difference among the joints in the three material properties: p = 0.9418, p = 0.7031, and p = 0.9313 for the aggregate modulus, the hyperelastic material constant, and the fluid load fraction, respectively.


2011 ◽  
Vol 415-417 ◽  
pp. 2116-2120 ◽  
Author(s):  
Sara Golbad ◽  
Mohammad Haghpanahi

Pathologies in soft tissues are associated with changes in their elastic properties. Tumor tissues are usually stiffer than the fat tissues and other normal tissues and show the nonlinear behavior in large deformations. There have been a lot of researches about elastography (linear and nonlinear) as a new detecting technique based on mechanical behavior of tissue. In order to formulate the tissue’s nonlinear behavior, a strain energy function is required. For better estimation of nonlinear tissue parameters in elasticity imaging, non linear stress-strain curve of phantom is used. This work presents hyperelastic measurement results of tissue-mimicking phantom undergoing large deformation during uniaxial compression. For phantom samples, 8 hyperelastic models have been used. The results indicate that polynomial model with N=2 is the most accurate in terms of fitting experimental data. To compare the results between elastic and hyperelastic model, a 3-D finite element numerical model developed based on two different materials of elastic and hyperelastic material properties. The comparison confirm the approach of other recent studies about necessity of hyperelastic elastography and state that hyperelastic elastography should be used to formulate a technique for breast cancer diagnosis.


2000 ◽  
Vol 123 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Mark E. Zobitz ◽  
Zong-Ping Luo ◽  
Kai-Nan An

A methodology was developed for determining the compressive properties of the supraspinatus tendon, based on finite element principles. Simplified three-dimensional models were created based on anatomical thickness measurements of unloaded supraspinatus tendons over 15 points. The tendon material was characterized as a composite structure of longitudinally arranged collagen fibers within an extrafibrillar matrix. The matrix was formulated as a hyperelastic material described by the Ogden form of the strain energy potential. The hyperelastic material parameters were parametrically manipulated until the analytical load-displacement results were similar to the results obtained from indentation testing. In the geometrically averaged tendon, the average ratio of experimental to theoretical maximum indentation displacement was 1.00 (SD: 0.01). The average normalization of residuals was 2.1g (SD: 0.9g). Therefore, the compressive material properties of the supraspinatus tendon extrafibrillar matrix were adequately derived with a first-order hyperelastic formulation. The initial compressive elastic modulus ranged from 0.024 to 0.090 MPa over the tendon surface and increased nonlinearly with additional compression. Using these material properties, the stresses induced during acromional impingement can be analyzed.


PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67439 ◽  
Author(s):  
Yuxiang Wang ◽  
Kara L. Marshall ◽  
Yoshichika Baba ◽  
Gregory J. Gerling ◽  
Ellen A. Lumpkin

Sign in / Sign up

Export Citation Format

Share Document