An Empirical Validation of a New Memetic CRO Algorithm for the Approximation of Time Series

Author(s):  
Antonio Manuel Durán-Rosal ◽  
Pedro Antonio Gutiérrez ◽  
Sancho Salcedo-Sanz ◽  
César Hervás-Martínez
Author(s):  
Christian Hillbrand

The motivation for this chapter is the observation that many companies build their strategy upon poorly validated hypotheses about cause and effect of certain business variables. However, the soundness of these cause-and-effect-relations as well as the knowledge of the approximate shape of the functional dependencies underlying these associations turns out to be the biggest issue for the quality of the results of decision supporting procedures. Since it is sufficiently clear that mere correlation of time series is not suitable to prove the causality of two business concepts, there seems to be a rather dogmatic perception of the inadmissibility of empirical validation mechanisms for causal models within the field of strategic management as well as management science. However, one can find proven causality techniques in other sciences like econometrics, mechanics, neuroscience, or philosophy. Therefore this chapter presents an approach which applies a combination of well-established statistical causal proofing methods to strategy models in order to validate them. These validated causal strategy models are then used as the basis for approximating the functional form of causal dependencies by the means of Artificial Neural Networks. This in turn can be employed to build an approximate simulation or forecasting model of the strategic system.


2012 ◽  
pp. 283-303
Author(s):  
Christian Hillbrand

The motivation for this chapter is the observation that many companies build their strategy upon poorly validated hypotheses about cause and effect of certain business variables. However, the soundness of these cause-and-effect-relations as well as the knowledge of the approximate shape of the functional dependencies underlying these associations turns out to be the biggest issue for the quality of the results of decision supporting procedures. Since it is sufficiently clear that mere correlation of time series is not suitable to prove the causality of two business concepts, there seems to be a rather dogmatic perception of the inadmissibility of empirical validation mechanisms for causal models within the field of strategic management as well as management science. However, one can find proven causality techniques in other sciences like econometrics, mechanics, neuroscience, or philosophy. Therefore this chapter presents an approach which applies a combination of well-established statistical causal proofing methods to strategy models in order to validate them. These validated causal strategy models are then used as the basis for approximating the functional form of causal dependencies by the means of Artificial Neural Networks. This in turn can be employed to build an approximate simulation or forecasting model of the strategic system.


1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


Sign in / Sign up

Export Citation Format

Share Document