scholarly journals Emergence of Regular and Complex Calcium Oscillations by Inositol 1,4,5-Trisphosphate Signaling in Astrocytes

Author(s):  
Valeri Matrosov ◽  
Susan Gordleeva ◽  
Natalia Boldyreva ◽  
Eshel Ben-Jacob ◽  
Victor Kazantsev ◽  
...  
Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2645-2654 ◽  
Author(s):  
C. Yue ◽  
K.L. White ◽  
W.A. Reed ◽  
T.D. Bunch

Intracellular Ca2+ (Ca2+i) transients during fertilization are critical to the activation of eggs in all species studied. Activation of both the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and ryanodine receptor (RYR) are responsible for the calcium oscillations during fertilization in sea urchin eggs. Using in vitro matured bovine oocytes loaded with Fura-2 AM ester as Ca2+i indicator, we addressed whether IP3Rs and RYRs coexist in mammalian eggs. Our results indicate that microinjection of 50–250 nM IP3 or 10–20 mM caffeine, 100–200 microM ryanodine and 4–8 microM cyclic ADP-ribose all induced Ca2+i release. The Ca2+i release induced by 250 nM IP3 could only be inhibited by prior injection of 1 mg/ml heparin which was overcome by continuous injection of IP3 to 1 microM. Prior injection of either 50 microM ruthenium red, 50 microM procaine or 1 % vehicle medium (VM) did not affect the Ca2+i release induced by IP3. Prior injection of heparin or VM did not affect the Ca2+i release induced by 10–20 mM caffeine or 200 microM ryanodine, but prior injection of 50 microM ruthenium red or procaine completely inhibited the effect of 10–20 mM caffeine. In addition, continuous injection of caffeine up to 40 mM overcame the inhibitory effect of ruthenium red or procaine. The same 50 microM concentration of ruthenium red or procaine only partially blocked the effect of 200 microM ryanodine, but 200 microM ruthenium red or procaine completely blocked the effect of 200 microM ryanodine.(ABSTRACT TRUNCATED AT 250 WORDS)


1999 ◽  
Vol 276 (1) ◽  
pp. L81-L89 ◽  
Author(s):  
Christina M. Pabelick ◽  
Y. S. Prakash ◽  
Mathur S. Kannan ◽  
Keith A. Jones ◽  
David O. Warner ◽  
...  

The effect of halothane on intracellular Ca2+ concentration ([Ca2+]i) regulation in porcine tracheal smooth muscle cells was examined with real-time confocal microscopy. Both 1 and 2 minimum alveolar concentration (MAC) halothane increased basal [Ca2+]iwhen Ca2+ influx and efflux were blocked, suggesting increased sarcoplasmic reticulum (SR) Ca2+ leak and/or decreased reuptake. In β-escin-permeabilized cells, heparin inhibition of inositol 1,4,5-trisphosphate-receptor channels blunted the halothane-induced increase in [Ca2+]i. Both 1 and 2 MAC halothane decreased the frequency and amplitude of ACh-induced [Ca2+]ioscillations (which represent SR Ca2+ release through ryanodine-receptor channels), abolishing oscillations in ∼20% of tracheal smooth muscle cells at 2 MAC. When Ca2+ influx and efflux were blocked, halothane increased the baseline and decreased the frequency and amplitude of [Ca2+]ioscillations, inhibiting oscillations in ∼70% of cells at 2 MAC. The fall time of [Ca2+]ioscillations and the rate of fall of the [Ca2+]iresponse to caffeine were both increased by halothane. These results suggest that halothane abolishes agonist-induced [Ca2+]ioscillations by 1) depleting SR Ca2+ via increased Ca2+ leak through inositol 1,4,5-trisphosphate-receptor channels, 2) decreasing Ca2+ release through ryanodine-receptor channels, and 3) inhibiting reuptake.


2003 ◽  
Vol 278 (50) ◽  
pp. 50355-50361 ◽  
Author(s):  
Ayako Miyakawa-Naito ◽  
Per Uhlén ◽  
Mark Lal ◽  
Oleg Aizman ◽  
Katsuhiko Mikoshiba ◽  
...  

2006 ◽  
Vol 173 (5) ◽  
pp. 755-765 ◽  
Author(s):  
Toru Matsu-ura ◽  
Takayuki Michikawa ◽  
Takafumi Inoue ◽  
Atsushi Miyawaki ◽  
Manabu Yoshida ◽  
...  

We developed genetically encoded fluorescent inositol 1,4,5-trisphosphate (IP3) sensors that do not severely interfere with intracellular Ca2+ dynamics and used them to monitor the spatiotemporal dynamics of both cytosolic IP3 and Ca2+ in single HeLa cells after stimulation of exogenously expressed metabotropic glutamate receptor 5a or endogenous histamine receptors. IP3 started to increase at a relatively constant rate before the pacemaker Ca2+ rise, and the subsequent abrupt Ca2+ rise was not accompanied by any acceleration in the rate of increase in IP3. Cytosolic [IP3] did not return to its basal level during the intervals between Ca2+ spikes, and IP3 gradually accumulated in the cytosol with a little or no fluctuations during cytosolic Ca2+ oscillations. These results indicate that the Ca2+-induced regenerative IP3 production is not a driving force of the upstroke of Ca2+ spikes and that the apparent IP3 sensitivity for Ca2+ spike generation progressively decreases during Ca2+ oscillations.


Cell Reports ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. 1209-1218 ◽  
Author(s):  
Lawrence D. Gaspers ◽  
Paula J. Bartlett ◽  
Antonio Politi ◽  
Paul Burnett ◽  
Walson Metzger ◽  
...  

2003 ◽  
Vol 285 (1) ◽  
pp. E138-E154 ◽  
Author(s):  
Leonid E. Fridlyand ◽  
Natalia Tamarina ◽  
Louis H. Philipson

We have developed a detailed mathematical model of ionic flux in β-cells that includes the most essential channels and pumps in the plasma membrane. This model is coupled to equations describing Ca2+, inositol 1,4,5-trisphosphate (IP3), ATP, and Na+ homeostasis, including the uptake and release of Ca2+ by the endoplasmic reticulum (ER). In our model, metabolically derived ATP activates inward Ca2+ flux by regulation of ATP-sensitive K+ channels and depolarization of the plasma membrane. Results from the simulations support the hypothesis that intracellular Na+ and Ca2+ in the ER can be the main variables driving both fast (2–7 osc/min) and slow intracellular Ca2+ concentration oscillations (0.3–0.9 osc/min) and that the effect of IP3 on Ca2+ leak from the ER contributes to the pattern of slow calcium oscillations. Simulations also show that filling the ER Ca2+ stores leads to faster electrical bursting and Ca2+ oscillations. Specific Ca2+ oscillations in isolated β-cell lines can also be simulated.


1999 ◽  
Vol 113 (6) ◽  
pp. 851-872 ◽  
Author(s):  
Andrew P. LeBeau ◽  
David I. Yule ◽  
Guy E. Groblewski ◽  
James Sneyd

The properties of inositol 1,4,5-trisphosphate (IP3)-dependent intracellular calcium oscillations in pancreatic acinar cells depend crucially on the agonist used to stimulate them. Acetylcholine or carbachol (CCh) cause high-frequency (10–12-s period) calcium oscillations that are superimposed on a raised baseline, while cholecystokinin (CCK) causes long-period (>100-s period) baseline spiking. We show that physiological concentrations of CCK induce rapid phosphorylation of the IP3 receptor, which is not true of physiological concentrations of CCh. Based on this and other experimental data, we construct a mathematical model of agonist-specific intracellular calcium oscillations in pancreatic acinar cells. Model simulations agree with previous experimental work on the rates of activation and inactivation of the IP3 receptor by calcium (DuFour, J.-F., I.M. Arias, and T.J. Turner. 1997. J. Biol. Chem. 272:2675–2681), and reproduce both short-period, raised baseline oscillations, and long-period baseline spiking. The steady state open probability curve of the model IP3 receptor is an increasing function of calcium concentration, as found for type-III IP3 receptors by Hagar et al. (Hagar, R.E., A.D. Burgstahler, M.H. Nathanson, and B.E. Ehrlich. 1998. Nature. 396:81–84). We use the model to predict the effect of the removal of external calcium, and this prediction is confirmed experimentally. We also predict that, for type-III IP3 receptors, the steady state open probability curve will shift to lower calcium concentrations as the background IP3 concentration increases. We conclude that the differences between CCh- and CCK-induced calcium oscillations in pancreatic acinar cells can be explained by two principal mechanisms: (a) CCK causes more phosphorylation of the IP3 receptor than does CCh, and the phosphorylated receptor cannot pass calcium current; and (b) the rate of calcium ATPase pumping and the rate of calcium influx from the outside the cell are greater in the presence of CCh than in the presence of CCK.


Sign in / Sign up

Export Citation Format

Share Document