Stage 3A and Stage 3B: Continued Process Verification

Author(s):  
Ajay Babu Pazhayattil ◽  
Naheed Sayeed-Desta ◽  
Emilija Fredro-Kumbaradzi ◽  
Jordan Collins
Keyword(s):  
2006 ◽  
Vol 69 (1) ◽  
pp. 145-153 ◽  
Author(s):  
M. L. HUTCHISON ◽  
L. D. WALTERS ◽  
G. C. MEAD ◽  
M. HOWELL ◽  
V. M. ALLEN

Studies to determine the appropriateness of the use of populations of indicator bacteria on poultry carcasses for process verification were undertaken in commercial slaughterhouses. Samples were collected from neck skin by excision or from whole carcass rinses and were examined for a range of presumptive process hygiene indicator bacteria. Coefficients of variation were calculated for each bacterial indicator and were significantly lower in excised samples, indicating more reproducible bacterial recovery by this sampling method. Total viable counts of aerobic bacteria, Enterobacteriaceae, and Pseudomonas in samples collected by excision had the lowest coefficients of variation when compared with other indicators and were therefore used for further study. The uncertainties associated with the quantification of each bacterial indicator were calculated and were lowest overall for total viable counts of aerobic bacteria. In general, uncertainty was higher for lower bacterial numbers. Results of microbiological testing on pooled excised neck skin samples were not significantly different from the mean of individually analyzed samples. Bacterial numbers increased by 1 log unit when cultures were stored under chilled conditions typical of those used for transporting samples to external laboratories, but the increases were not significant for Pseudomonas and aerobic bacteria when storage time was less than 17 h. Weak relationships were identified between bacterial indicator numbers and duration of processing, although cleanliness of the processing environment diminished visibly during this time. In the plants visited for this study, there was a poor relationship between presumptive bacterial indicator numbers and process hygiene. Consequently, bacterial analyses for process verification purposes may be of limited value.


2021 ◽  
Vol 30 ◽  
pp. 263498332199474
Author(s):  
Qiang Guo ◽  
Kai He ◽  
Hengyuan Xu ◽  
Youyi Wen

With the application of “ λ” type composite skin becoming more and more extensive and diversified, its precise forming technology is also widely concerned. This article mainly solves the quality problems of “ λ” type corner area, such as delamination dispersion and surface wrinkle, which exist in reality commonly in the manufacturing process. The prepreg is heated along the corner area of the tooling to solve the problem that prepreg is difficult to be compacted due to the large modulus of carbon fiber in “ λ” type corner area. Furthermore, two precompaction tests are creatively increased at 16 layers (middle layer) and 32 layers (last layer) for the thick structure, respectively, to ensure the compaction effect of the blank. In addition, combined with the characteristics of highly elastic rubber and carbon fiber-reinforced materials, a new type of soft mold structure with proper flexibility and good stiffness is proposed innovatively through the reasonable placement of carbon fiber-reinforced materials and the setting of exhaust holes according to the structure characteristics of “ λ” type root skin. Through further process verification, it is shown that the improved process has effectively solved the problems of wrinkles and internal delamination at the sharp corners of parts and realized zero-defect manufacturing of “ λ” type root skin for the first time.


2018 ◽  
Vol 35 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Mustufa H. Abidi ◽  
Abdulrahman M. Al-Ahmari ◽  
Ali Ahmad ◽  
Saber Darmoul ◽  
Wadea Ameen

AbstractThe design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.


Author(s):  
Ajay Pazhayattil ◽  
Naheed Sayeed-Desta ◽  
Emilija Fredro-Kumbaradzi ◽  
Marzena Ingram ◽  
Jordan Collins

Author(s):  
Tatiana Pogarskaia ◽  
Sergey Lupuleac ◽  
Julia Shinder ◽  
Philipp Westphal

Abstract Riveting and bolting are common assembly methods in aircraft production. The fasteners are installed immediately after hole drilling and fix the relative tangential displacements of the parts, that took place. A proper fastener sequence installation is very important because a wrong one can lead to a “bubble-effect”, when gap between parts after fastening becomes larger in some areas rather than being reduced. This circumstance affects the quality of the final assembly. For that reason, the efficient methods for determination of fastening sequence taking into account the specifics of the assembly process are needed. The problem is complicated by several aspects. First of all, it is a combinatorial problem with uncertain input data. Secondly, the assembly quality evaluation demands the time-consuming computations of the stress-strain state of the fastened parts caused by sequential installation of fasteners. Most commonly used strategies (heuristic methods, approximation algorithms) require a large number of computational iterations what dramatically complicates the problem. The paper presents the efficient methods of fastener sequence optimization based on greedy strategy and the specifics of the assembly process. Verification of the results by comparison to commonly used installation strategies shows its quality excellence.


Author(s):  
Tuğba Gürgen ◽  
Ayça Tarhan ◽  
N. Alpay Karagöz

The verification of process implementations according to specifications is a critical step of process management. This verification must be practiced according to objective criteria and evidence. This study explains an integrated infrastructure that utilizes process mining for software process verification and case studies carried out by using this infrastructure. Specific software providing the utilization of process mining algorithms for software process verification is developed as a plugin to an open-source EPF Composer tool that supports the management of software and system engineering processes. With three case studies, bug management, task management, and defect management processes are verified against defined and established process models (modeled by using EPF Composer) by using this plugin over real process data. Among these, the results of the case study performed in a large, leading IT solutions company in Turkey are remarkable in demonstrating the opportunities for process improvement.


Sign in / Sign up

Export Citation Format

Share Document