Domain Attention Model for Domain Generalization in Object Detection

Author(s):  
Weixiong He ◽  
Huicheng Zheng ◽  
Jianhuang Lai
Author(s):  
Adhi Prahara ◽  
Murinto Murinto ◽  
Dewi Pramudi Ismi

The philosophy of human visual attention is scientifically explained in the field of cognitive psychology and neuroscience then computationally modeled in the field of computer science and engineering. Visual attention models have been applied in computer vision systems such as object detection, object recognition, image segmentation, image and video compression, action recognition, visual tracking, and so on. This work studies bottom-up visual attention, namely human fixation prediction and salient object detection models. The preliminary study briefly covers from the biological perspective of visual attention, including visual pathway, the theory of visual attention, to the computational model of bottom-up visual attention that generates saliency map. The study compares some models at each stage and observes whether the stage is inspired by biological architecture, concept, or behavior of human visual attention. From the study, the use of low-level features, center-surround mechanism, sparse representation, and higher-level guidance with intrinsic cues dominate the bottom-up visual attention approaches. The study also highlights the correlation between bottom-up visual attention and curiosity.


2020 ◽  
Vol 32 (18) ◽  
pp. 14549-14562 ◽  
Author(s):  
Fuhao Zou ◽  
Wei Xiao ◽  
Wanting Ji ◽  
Kunkun He ◽  
Zhixiang Yang ◽  
...  

Author(s):  
Кonstantin А. Elshin ◽  
Еlena I. Molchanova ◽  
Мarina V. Usoltseva ◽  
Yelena V. Likhoshway

Using the TensorFlow Object Detection API, an approach to identifying and registering Baikal diatom species Synedra acus subsp. radians has been tested. As a result, a set of images was formed and training was conducted. It is shown that аfter 15000 training iterations, the total value of the loss function was obtained equal to 0,04. At the same time, the classification accuracy is equal to 95%, and the accuracy of construction of the bounding box is also equal to 95%.


2010 ◽  
Vol 130 (9) ◽  
pp. 1572-1580
Author(s):  
Dipankar Das ◽  
Yoshinori Kobayashi ◽  
Yoshinori Kuno

Sign in / Sign up

Export Citation Format

Share Document