Cytosolic Heat Shock Protein 90 in Plant Hormone and Environmental Stress Response

Author(s):  
Kenji Yamada ◽  
Etsuko Watanabe
2021 ◽  
pp. mbc.E21-03-0104
Author(s):  
Andrew J. Kane ◽  
Christopher M. Brennan ◽  
Acer E. Xu ◽  
Eric J. Solís ◽  
Allegra Terhorst ◽  
...  

Aneuploid yeast cells are in a chronic state of proteotoxicity yet do not constitutively induce the cytosolic unfolded protein response (HSR) by Heat shock factor 1 (Hsf1). Here, we demonstrate that an active environmental stress response (ESR), a hallmark of aneuploidy across different models, suppresses Hsf1 induction in models of single chromosome gain. Furthermore, engineered activation of the ESR in the absence of stress was sufficient to suppress Hsf1 activation in euploid cells by subsequent heat shock while increasing thermotolerance and blocking formation of heat-induced protein aggregates. Suppression of the ESR in aneuploid cells resulted in longer cell doubling times and decreased viability in the presence of additional proteotoxicity. Lastly, we show that in euploids Hsf1 induction by heat shock is curbed by the ESR. Strikingly, we found a similar relationship between the ESR and the HSR using an inducible model of aneuploidy. Our work explains a long-standing paradox in the field and provides new insights into conserved mechanisms of proteostasis with potential relevance to cancers associated with aneuploidy.


1996 ◽  
Vol 219 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Aya Fukuda ◽  
Toshihiko Osawa ◽  
Hiroaki Oda ◽  
Tomoyuki Tanaka ◽  
Shinya Toyokuni ◽  
...  

2019 ◽  
Vol 63 (7) ◽  
Author(s):  
M. Aruanno ◽  
D. Bachmann ◽  
D. Sanglard ◽  
F. Lamoth

ABSTRACT Aspergillus fumigatus is an opportunistic mold responsible for invasive aspergillosis. Triazoles (e.g., voriconazole) represent the first-line treatment, but emerging resistance is of concern. The echinocandin drug caspofungin is used as second-line treatment but has limited efficacy. The heat shock protein 90 (Hsp90) orchestrates the caspofungin stress response and is the trigger of an adaptive phenomenon called the paradoxical effect (growth recovery at increasing caspofungin concentrations). The aim of this study was to elucidate the Hsp90-dependent mechanisms of the caspofungin stress response. Transcriptomic profiles of the wild-type A. fumigatus strain (KU80) were compared to those of a mutant strain with substitution of the native hsp90 promoter by the thiA promoter (pthiA-hsp90), which lacks the caspofungin paradoxical effect. Caspofungin induced expression of the genes of the mitochondrial respiratory chain (MRC), in particular, NADH-ubiquinone oxidoreductases (complex I), in KU80 but not in the pthiA-hsp90 mutant. The caspofungin paradoxical effect could be abolished by rotenone (MRC complex I inhibitor) in KU80, supporting the role of MRC in the caspofungin stress response. Fluorescent staining of active mitochondria and measurement of oxygen consumption and ATP production confirmed the activation of the MRC in KU80 in response to caspofungin, but this activity was impaired in the pthiA-hsp90 mutant. Using a bioluminescent reporter for the measurement of intracellular calcium, we demonstrated that inhibition of Hsp90 by geldanamycin or MRC complex I by rotenone prevented the increase in intracellular calcium shown to be essential for the caspofungin paradoxical effect. In conclusion, our data support a role of the MRC in the caspofungin stress response which is dependent on Hsp90.


2001 ◽  
Vol 120 (5) ◽  
pp. A357-A357
Author(s):  
T YOH ◽  
T NAKASHIMA ◽  
Y SUMIDA ◽  
Y KAKISAKA ◽  
H ISHIKAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document