Classification of EEG Signals for Cognitive Load Estimation Using Deep Learning Architectures

Author(s):  
Anushri Saha ◽  
Vikash Minz ◽  
Sanjith Bonela ◽  
S. R. Sreeja ◽  
Ritwika Chowdhury ◽  
...  
2021 ◽  
Author(s):  
Tao Wu ◽  
Xiangzeng Kong ◽  
Yiwen Wang ◽  
Xue Yang ◽  
Jingxuan Liu ◽  
...  

2021 ◽  
Author(s):  
Ana Siravenha ◽  
Walisson Gomes ◽  
Renan Tourinho ◽  
Sergio Viademonte ◽  
Bruno Gomes

Classification of electroencephalography (EEG) signals is a complex task. EEG is a non-stationary time process with low signal to noise ratio. Among many methods usedfor EEG classification, those based on Deep Learning (DL) have been relatively successful in providing high classification accuracies. In the present study we aimed at classify resting state EEGs measured from workers of a mining complex. Just after the EEG has been collected, the workers undergonetraining in a 4D virtual reality simulator that emulates the iron ore excavation from which parameters related to their performance were analyzed by the technical staff who classified the workers into four groups based on their productivity. Twoconvolutional neural networks (ConvNets) were then used to classify the workers EEG bases on the same productivity label provided by the technical staff. The neural data was used in three configurations in order to evaluate the amount of datarequired for a high accuracy classification. Isolated, the channel T5 achieved 83% of accuracy, the subtraction of channels P3 and Pz achieved 99% and using all channels simultaneously was 99.40% assertive. This study provides results that add to the recent literature showing that even simple DL architectures are able to handle complex time series such as the EEG. In addition, it pin points an application in industry with vast possibilities of expansion.


2020 ◽  
pp. 1-1
Author(s):  
Leila Farsi ◽  
Siuly Siuly ◽  
Enamul Kabir ◽  
Hua Wang

Author(s):  
Takuya TAGAMI ◽  
Kohnosuke KANDA ◽  
Hideaki YAGI ◽  
Satoshi HOSHINO
Keyword(s):  

2020 ◽  
Vol 8 (3) ◽  
pp. 234-238
Author(s):  
Nur Choiriyati ◽  
Yandra Arkeman ◽  
Wisnu Ananta Kusuma

An open challenge in bioinformatics is the analysis of the sequenced metagenomes from the various environments. Several studies demonstrated bacteria classification at the genus level using k-mers as feature extraction where the highest value of k gives better accuracy but it is costly in terms of computational resources and computational time. Spaced k-mers method was used to extract the feature of the sequence using 111 1111 10001 where 1 was a match and 0 was the condition that could be a match or did not match. Currently, deep learning provides the best solutions to many problems in image recognition, speech recognition, and natural language processing. In this research, two different deep learning architectures, namely Deep Neural Network (DNN) and Convolutional Neural Network (CNN), trained to approach the taxonomic classification of metagenome data and spaced k-mers method for feature extraction. The result showed the DNN classifier reached 90.89 % and the CNN classifier reached 88.89 % accuracy at the genus level taxonomy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Keno K. Bressem ◽  
Lisa C. Adams ◽  
Christoph Erxleben ◽  
Bernd Hamm ◽  
Stefan M. Niehues ◽  
...  

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Jyoti Dabass ◽  
M. Hanmandlu ◽  
Rekha Vig

AbstractWith aim of detecting breast cancer at the early stages using mammograms, this study presents the formulation of five feature types by extending the information set to encompass the concept of an intuitionist fuzzy set. The resulting pervasive information set gives not only the certainty of the pixel intensities of mammograms to a class but also the deficiency in the fuzzy modeling referred to as the hesitancy. The generalized adaptive Hanman Anirban fuzzy entropy function is shown to be equivalent to the hesitancy entropy function. The probability-based fuzzy Hanman transform and the pervasive Information with probability taking the role of hesitancy degree help derive the above five feature types termed as probability-based pervasive Information set features. The effectiveness of each feature type is demonstrated on the mini-MIAS and DDSM databases for the multi-class categorization of mammograms using the Hanman transform classifier. The statistical analysis by ANOVA test proves that the features are statistically significant and the experimental results are shown to be clinically relevant by the expert radiologists. The performance of the five feature types is either superior to or equal to that of some deep learning architectures on comparison but they outperform the state-of-the-art literature methods in the classification of breast cancer using mammograms.


Author(s):  
Anirudra Diwakar ◽  
Taranjit Kaur ◽  
Chetan Ralekar ◽  
Tapan Kumar Gandhi

Sign in / Sign up

Export Citation Format

Share Document