scholarly journals Formulation of probability-based pervasive information set features and Hanman transform classifier for the categorization of mammograms

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Jyoti Dabass ◽  
M. Hanmandlu ◽  
Rekha Vig

AbstractWith aim of detecting breast cancer at the early stages using mammograms, this study presents the formulation of five feature types by extending the information set to encompass the concept of an intuitionist fuzzy set. The resulting pervasive information set gives not only the certainty of the pixel intensities of mammograms to a class but also the deficiency in the fuzzy modeling referred to as the hesitancy. The generalized adaptive Hanman Anirban fuzzy entropy function is shown to be equivalent to the hesitancy entropy function. The probability-based fuzzy Hanman transform and the pervasive Information with probability taking the role of hesitancy degree help derive the above five feature types termed as probability-based pervasive Information set features. The effectiveness of each feature type is demonstrated on the mini-MIAS and DDSM databases for the multi-class categorization of mammograms using the Hanman transform classifier. The statistical analysis by ANOVA test proves that the features are statistically significant and the experimental results are shown to be clinically relevant by the expert radiologists. The performance of the five feature types is either superior to or equal to that of some deep learning architectures on comparison but they outperform the state-of-the-art literature methods in the classification of breast cancer using mammograms.

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1319
Author(s):  
Muhammad Hammad Saleem ◽  
Johan Potgieter ◽  
Khalid Mahmood Arif

Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative analysis among well-known CNN architectures along with modified and cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly, the performance of the best-obtained model was attempted to improve by training through various deep learning optimizers. The comparison between various CNNs was based on performance metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the selected DL architectures were trained in the PlantVillage dataset which contains 26 different diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train deep learning architectures. It is concluded that the Xception architecture trained with the Adam optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively which is comparatively better than the previous approaches and it proves the novelty of the work. Therefore, the method proposed in this research can be applied to other agricultural applications for transparent detection and classification purposes.


2022 ◽  
Author(s):  
Qing Lin ◽  
Wei-Min Tan ◽  
Si-Yuan Zhu ◽  
Yan Huang ◽  
Qin Xiao ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1459 ◽  
Author(s):  
Tamás Czimmermann ◽  
Gastone Ciuti ◽  
Mario Milazzo ◽  
Marcello Chiurazzi ◽  
Stefano Roccella ◽  
...  

This paper reviews automated visual-based defect detection approaches applicable to various materials, such as metals, ceramics and textiles. In the first part of the paper, we present a general taxonomy of the different defects that fall in two classes: visible (e.g., scratches, shape error, etc.) and palpable (e.g., crack, bump, etc.) defects. Then, we describe artificial visual processing techniques that are aimed at understanding of the captured scenery in a mathematical/logical way. We continue with a survey of textural defect detection based on statistical, structural and other approaches. Finally, we report the state of the art for approaching the detection and classification of defects through supervised and non-supervised classifiers and deep learning.


Author(s):  
Anushri Saha ◽  
Vikash Minz ◽  
Sanjith Bonela ◽  
S. R. Sreeja ◽  
Ritwika Chowdhury ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1302 ◽  
Author(s):  
Reem Ibrahim Hasan ◽  
Suhaila Mohd Yusuf ◽  
Laith Alzubaidi

Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it has gradually become the leading approach in many fields. It is currently playing a vital role in the early detection and classification of plant diseases. The use of ML techniques in this field is viewed as having brought considerable improvement in cultivation productivity sectors, particularly with the recent emergence of DL, which seems to have increased accuracy levels. Recently, many DL architectures have been implemented accompanying visualisation techniques that are essential for determining symptoms and classifying plant diseases. This review investigates and analyses the most recent methods, developed over three years leading up to 2020, for training, augmentation, feature fusion and extraction, recognising and counting crops, and detecting plant diseases, including how these methods can be harnessed to feed deep classifiers and their effects on classifier accuracy.


Sign in / Sign up

Export Citation Format

Share Document