Struvite Stones

Author(s):  
Walter P. Mutter
Keyword(s):  
Kidney360 ◽  
2020 ◽  
pp. 10.34067/KID.0006942020
Author(s):  
Jessica J. Saw ◽  
Mayandi Sivaguru ◽  
Elena M. Wilson ◽  
Yiran Dong ◽  
Robert A. Sanford ◽  
...  

Background: Human kidney stones form via repeated events of mineral precipitation, partial dissolution and reprecipitation, which are directly analogous to similar processes in other natural and man-made environments where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to assemble definitive evidence of in vivo microbiome entombment during urolithiasis. Methods: Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percutaneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these patients were calcium oxalate (CaOx) stone formers, while one patient each formed brushite and struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments from 7 of these 20 patients (5 CaOx, 1 brushite and 1 struvite) were thin sectioned and analyzed using brightfield (BF), polarization (POL), confocal, superresolution autofluorescence (SRAF) and Raman techniques. DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon sequencing of 16S rRNA gene sequences (V1-V3, V3-V5) and internal transcribed spacer (ITS1, ITS2) regions. Results: Bulk entombed DNA was sequenced from stone fragments in 11 of the 18 CaOx patients, as well as the brushite and struvite patients. These analyses confirmed the presence of an entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Aspergillus niger. Bacterial cells ~1  µm in diameter were also optically observed to be entombed and well-preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of brushite and struvite. Conclusions: These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone biomineralization.


2021 ◽  
Vol 93 (3) ◽  
pp. 307-312
Author(s):  
Adam Hali´nski ◽  
Kamran Hassan Bhatti ◽  
Luca Boeri ◽  
Jonathan Cloutier ◽  
Kaloyan Davidoff ◽  
...  

Objective: To study urinary stone composition patterns in different populations around the world. Materials and methods: Data were collected by reviewing charts of 1204 adult patients of 10 countries with renal or ureteral stones (> 18 years) in whom a stone analysis was done and available. Any method of stone analysis was accepted, but the methodology had to be registered. Results: In total, we observed 710 (59%) patients with calcium oxalate, 31 (1%) with calcium phosphate, 161 (13%) with mixed calcium oxalate/calcium phosphate, 15 (1%) with carbapatite, 110 (9%) with uric acid, 7 (< 1%) with urate (ammonium or sodium), 100 (9%) with mixed with uric acid/ calcium oxalate, 56 (5%) with struvite and 14 (1%) with cystine stones. Calciumcontaining stones were the most common in all countries ranging from 43 to 91%. Oxalate stones were more common than phosphate or mixed phosphate/oxalate stones in most countries except Egypt and India. The rate of uric acid containing stones ranged from 4 to 34%, being higher in Egypt, India, Pakistan, Iraq, Poland and Bulgaria. Struvite stones occurred in less than 5% in all countries except India (23%) and Pakistan (16%). Cystine stones occurred in 1% of cases. Conclusions: The frequency of different types of urinary stones varies from country to country. Calcium-containing stones are prevalent in all countries. The frequency of uric acid containing stones seems to depend mainly on climatic factors, being higher in countries with desert or tropical climates. Dietary patterns can also lead to an increase in the frequency of uric acid containing stones in association with high obesity rates. Struvite stones are decreasing in most countries due to improved health conditions.


Author(s):  
Alexandre Danilovic ◽  
Thiago Augusto Cunha Ferreira ◽  
Samirah Abreu Gomes ◽  
Isabela Akemi Wei ◽  
Fabio Carvalho Vicentini ◽  
...  

Abstract Background and objective: Magnesium ammonium phosphate stones (MAP), also known as struvite stones, are associated with urinary infection and impairment of renal unit. The aim of this study is to evaluate the urinary metabolic risk factors for recurrence of renal calculi in patients submitted to nephrectomy due to MAP stones. Methods: We retrospectively reviewed the charts of patients > 18 years old submitted to total nephrectomy due to pure MAP stones and pure calcium oxalate (CaOx) stones from July 2006 to July 2016. Urinary metabolic parameters were assessed through 24-hour urine exams ≥ 3 months after nephrectomy. Urinary metabolic parameters and new event related to lithiasis were compared. Results: Twenty-eight and 39 patients were included in MAP and CaOx group, respectively. Abnormalities in 24-hour urine samples were similar between groups. Hypercalciuria occurred in 7.1 and 10.3% of patients in MAP and CaOx group, respectively (p = 0.66), whereas hypocitraturia was present in 65.2 and 59.0% of patients with MAP and CaOx group, respectively (p = 0.41). No significant difference in new events was found between MAP and CaOx groups (17.9 vs. 23.1%, respectively; p = 0.60). Conclusion: A 24-hour urine evaluation should be offered to patients submitted to nephrectomy due to pure MAP stones in order to detect metabolic risk, improve treatment, and prevent stone recurrence.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Ahmed Salah Mahmoud Ahmed Shehata ◽  
Mohamed Rafik El-Halaby ◽  
Ahmed Mohamed Saafan

Abstract Objectives to make a reliable correlation between the chemical composition of the urinary calculi and its Hounsfield unit on CT scan, upon which we can depend on it for prediction of the type of the urinary calculi. The prediction of the chemical structure of the stone would help us to reach a more efficient therapeutic and prophylactic plan. Methods A retrospective study was performed by interpretation of the preoperative CT scans for patients who were presented by urinary stones. Identification of the chemical structure of the calculi was implemented using Fourier Transform Infrared Spectroscopy (FT-IR spectroscopy). The laboratory report revealed multiple types of stones either of pure or mixed composition. Afterwards, a comparison was done between Hounsfield units of the stones and the chemical structure. Results The chemical structure of the urinary stones revealed four pure types of stones (Uric acid, Calcium Oxalate, Struvite and Cystine) and two types of mixed stones (mixed calcium oxalate+ Uric, and mixed calcium oxalate+ calcium phosphate). Uric acid stone had a mean Hounsfield Unit (HU) density of428 ± 81, which was quite less than the other stones, followed by struvite stones with density ranging about 714 ± 38. Mixed calcium oxalate stones could be differentiated from other types of stones like uric acid, pure calcium oxalate and struvite stones by the Hounsfield unit of Computed Tomography (the mean Hounsfield Unit was 886 ± 139 and 1427 ± 152 for mixed calcium oxalate + uric stone and mixed calcium oxalate + calcium phosphate stones respectively). Moreover, pure calcium oxalate stones were easily differentiated from all other stones using the mean Hounsfield density as it was 1158 ± 83. It was challenging only when it was compared to cystine stones, as they were quiet similar to HU value (997 ± 14). The variation of Hounsfield values among the previously mentioned stones, was statistically significant (p &lt; 0.001). Conclusion The study proved that the Hounsfield Unit of CT scanning is a convenient measure to predict the chemical structure of urinary calculi.


2019 ◽  
Vol 38 (1) ◽  
pp. 219-229 ◽  
Author(s):  
Xiaomin Gao ◽  
Chaoyue Lu ◽  
Fei Xie ◽  
Ling Li ◽  
Min Liu ◽  
...  

1994 ◽  
Vol 8 (2) ◽  
pp. 95-98 ◽  
Author(s):  
J. BENNETT ◽  
STEPHEN P. DRETLER ◽  
J. SELENGUT ◽  
W.H. ORME-JOHNSON

Author(s):  
D. Brooke Johnson ◽  
Margaret S. Pearle
Keyword(s):  

1991 ◽  
Vol 23 (6) ◽  
pp. 537-542 ◽  
Author(s):  
A. Garcia-Raia ◽  
A. Conte ◽  
F. Grases
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document