The Application and Development of Smart Clothing

Author(s):  
Jia Lyu ◽  
Yue Sui ◽  
Dongsheng Chen
Keyword(s):  
2020 ◽  
Author(s):  
Yea-Ing Shyu ◽  
Chung-Chih Lin ◽  
Ching-Tzu Yang ◽  
Pei-Ling Su ◽  
Jung-Ling Hsu

BACKGROUND Wearable devices have been developed and implemented to improve data collection in remote health care and smart care. Wearable devices have the advantage of always being with individuals, enabling easy detection of their movements. In this study, we developed and implemented a smart-care system using smart clothing for persons with dementia and with hip fracture. We conducted a preliminary study to understand family caregivers’ and care receivers’ experiences of receiving a smart technology-assisted (STA) home-nursing care program. OBJECTIVE This paper reports the difficulties we encountered and strategies we developed during the feasibility phase of studies on the effectiveness of our STA home-nursing care program for persons with dementia and hip fracture. METHODS Our care model, a STA home-nursing care program for persons with dementia and those with hip fracture included a remote-monitoring system for elderly persons wearing smart clothing was used to facilitate family caregivers’ detection of elderly persons’ movements. These movements included getting up at night, staying in the bathroom for more than 30 minutes, not moving more than 2 hours during the day, leaving the house, and daily activities. Participants included 13 families with 5 patients with hip fracture and 7 with dementia. Research nurses documented the difficulties they encountered during the process. RESULTS Difficulties encountered in this smart-care study were categorized into problems setting up the smart-care environment, problems running the system, and problems with participant acceptance/adherence. These difficulties caused participants to drop out, the system to not function or delayed function, inability to collect data, extra costs of manpower, and financial burden. Strategies to deal with these problems are also reported. CONCLUSIONS During the implementation of smart care at home for persons with dementia or hip fracture, different aspects of difficulties were found and strategies were taken. The findings of this study can provide a reference for future implementation of similar smart-home devices.


2020 ◽  
Vol 9 (1) ◽  
pp. 1183-1191
Author(s):  
Xinlin Li ◽  
Rixuan Wang ◽  
Leilei Wang ◽  
Aizhen Li ◽  
Xiaowu Tang ◽  
...  

AbstractDevelopment of stretchable wearable devices requires essential materials with high level of mechanical and electrical properties as well as scalability. Recently, silicone rubber-based elastic polymers with incorporated conductive fillers (metal particles, carbon nanomaterials, etc.) have been shown to the most promising materials for enabling both high electrical performance and stretchability, but the technology to make materials in scalable fabrication is still lacking. Here, we propose a facile method for fabricating a wearable device by directly coating essential electrical material on fabrics. The optimized material is implemented by the noncovalent association of multiwalled carbon nanotube (MWCNT), carbon black (CB), and silicon rubber (SR). The e-textile sensor has the highest gauge factor (GF) up to 34.38 when subjected to 40% strain for 5,000 cycles, without any degradation. In particular, the fabric sensor is fully operational even after being immersed in water for 10 days or stirred at room temperature for 8 hours. Our study provides a general platform for incorporating other stretchable elastic materials, enabling the future development of the smart clothing manufacturing.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2804
Author(s):  
Silvia Imbesi ◽  
Sofia Scataglini

Smart clothing plays a big role to foster innovation and to. boost health and well-being, improving the quality of the life of people, especially when addressed to niche users with particular needs related to their health. Designing smart apparel, in order to monitor physical and physiological functions in older users, is a crucial asset that user centered design is exploring, balancing needs expressed by the users with technological requirements related to the design process. In this paper, the authors describe a user centered methodology for the design of smart garments based on the evaluation of users’ acceptance of smart clothing. This comparison method can be considered as similar to a simplified version of the quality function deployment tool, and is used to evaluate the general response of each garment typology to different categories of requirements, determining the propensity of the older user to the utilization of the developed product. The suggested methodology aims at introducing in the design process a tool to evaluate and compare developed solutions, reducing complexity in design processes by providing a tool for the comparison of significant solutions, correlating quantitative and qualitative factors.


2018 ◽  
Vol 7 (1-2) ◽  
pp. 116-128
Author(s):  
Ding Wei ◽  
Yukari Nagai ◽  
Liu Jing ◽  
Guo Xiao

Sign in / Sign up

Export Citation Format

Share Document