Drought Stress Adaptation in Norway Spruce and Related Genomics Work

Author(s):  
Jaroslav Klápště ◽  
Jonathan Lecoy ◽  
María del Rosario García-Gil
2021 ◽  
Author(s):  
Erica Jaakkola ◽  
Anna Maria Jönsson ◽  
Per-Ola Olsson ◽  
Maj-Lena Linderson ◽  
Thomas Holst

<p>Tree killing by spruce bark beetles (<em>Ips typographus</em>) is one of the main disturbances to Norway spruce (<em>Picea abies</em>) forests in Europe and the risk of outbreaks is amplified by climate change with effects such as increased risk of storm felling, tree drought stress and an additional generation of spruce bark beetles per year<sup>[1]</sup>. The warm and dry summer of 2018 triggered large outbreaks in Sweden, the increased outbreaks are still ongoing and affected about 8 million m<sup>3</sup> forest in 2020<sup>[2]</sup>. This is the so far highest record of trees killed by the spruce bark beetle in a single year in Sweden<sup>[2]</sup>. In 1990-2010, the spruce bark beetle killed on average 150 000 m<sup>3</sup> forest per year in southern Sweden<sup>[3]</sup>. Bark beetles normally seek and attack Norway spruces with lowered defense, i.e. trees that are wind-felled or experience prolonged drought stress<sup>[4]</sup>. However, as the number of bark beetle outbreaks increase, the risk of attacks on healthy trees also increase<sup>[5]</sup>. This causes a higher threat to forest industry, and lowers the possibilities to mitigate climate change in terms of potential decreases in carbon uptake if the forests die<sup>[4,5]</sup>. Norway spruce trees normally defend themselves by drenching the beetles in resin<sup>[6]</sup>. The resin in turn contains different biogenic volatile organic compounds (BVOCs), which can vary if the spruce is attacked by bark beetles or not<sup> [4,6]</sup>. The most abundant group of terpenoids (isoprene, monoterpenes and sesquiterpenes), is most commonly emitted from conifers, such as Norway spruce<sup>[7,8]</sup>. The aim of this study was to enable a better understanding of the direct defense mechanisms of spruce trees by quantifying BVOC emissions and its composition from individual trees under attack</p><p>To analyze the bark beetles’ impact on Norway spruce trees a method was developed using tree trunk chambers and adsorbent tubes. This enables direct measurements of the production of BVOCs from individual trees. Three different sites in Sweden, with different environmental conditions were used for the study and samples were collected throughout the growing season of 2019. After sampling, the tubes were analyzed in a lab using automated thermal desorption coupled to a gas chromatograph and a mass spectrometer to identify BVOC species and their quantity.</p><p>The preliminary results show a strong increase in BVOC emissions from a healthy tree that became infested during the data collection. The finalized results expect to enable better understanding of how spruce trees are affected by insect stress from bark beetles, and if bark beetle infestation will potentially result in increased carbon emission in the form of BVOCs.</p><p><strong>References</strong></p><p>[1] Jönsson et al. (2012). Agricultural and Forest Meteorology 166: 188–200<br>[2] Skogsstyrelsen, (2020). https://via.tt.se/pressmeddelande/miljontals-granar-dodades-av-granbarkborren-2020?publisherId=415163&releaseId=3288473<br>[3] Marini et al. (2017). Ecography, 40(12), 1426–1435.<br>[4] Raffa (1991). Photochemical induction by herbivores. pp. 245-276<strong><br></strong>[5] Seidl, et al. (2014). Nature Climate Change, 4(9), 806-810. <br>[6] Ghimire, et al. (2016). Atmospheric Environment, 126, 145-152.<br>[7] Niinemets, U. and Monson, R. (2013). ISBN 978-94-007-6606-8<br>[8] Kesselmeier, J. and Staudt, M. (1999). Journal of Atmospheric Chemistry, 33(1), pp.23-88</p>


Author(s):  
Xenia Hao-Yi Yeoh ◽  
Blessing Durodola ◽  
Kathrin Blumenstein ◽  
Eeva Terhonen

The major threats to the sustainable supply of forest tree products are adverse climate, pests and diseases. Climate change, exemplified by increased drought, poses a unique threat to global forest health. This is attributed to the unpredictable behavior of forest pathosystems, which can favor fungal pathogens over the host under persistent drought stress conditions in the future. Currently, the effects of drought on tree resistance against pathogens are hypothetical, thus research is needed to identify these correlations. Norway spruce (Picea abies) is one of the most economically important tree species in Europe, and is considered highly vulnerable to changes in climate. Dedicated experiments to investigate how disturbances will affect the Norway spruce - Heterobasidion sp. pathosystem are important, in order to develop different strategies to limit the spread of H. annosum s.l. under the predicted climate change. Here, we report a transcriptional study to compare Norway spruce gene expressions to evaluate the effects of water availability and the infection of Heterobasidion parviporum. We performed inoculation studies of three-year-old saplings in a greenhouse (purchased from a nursery). Norway spruce saplings were treated in either high (+) or low (-) water groups: high water group received double the water amount than the low water group. RNA was extracted and sequenced. Similarly, we quantified gene expression levels of candidate genes in biotic stress and jasmonic acid (JA) signaling pathways using qRT-PCR, through which we discovered a unique preferential defense response of H. parviporum-infected Norway spruce under drought stress at the molecular level. Disturbances related to water availability, especially low water conditions can have negative effects on the tree host and benefit the infection ability of the pathogens in the host. From our RNA-seq analysis, 114 differentially expressed gene regions were identified between high (+) and low (-) water groups under pathogen attack. None of these gene pathways were identified to be differentially expressed from both non-treated and mock-control treatments between high (+) and low (-) water groups. Finally, only four genes were found to be associated with drought in all treatments.


1992 ◽  
Vol 86 (2) ◽  
pp. 297-300 ◽  
Author(s):  
Leif Eklund ◽  
Emil Cienciala ◽  
Jan-Erik Hallgren

2016 ◽  
Vol 4 (5) ◽  
pp. 367-376 ◽  
Author(s):  
Kwabena Darkwa ◽  
Daniel Ambachew ◽  
Hussein Mohammed ◽  
Asrat Asfaw ◽  
Matthew W. Blair

2015 ◽  
Vol 66 (9) ◽  
pp. 904 ◽  
Author(s):  
Gurmeen Rakhra ◽  
Arun Dev Sharma ◽  
Jatinder Singh

Approximately 70% of crop yield losses are caused by abiotic stresses, with drought being the most serious threat to crop production in many areas of the world. Plants have developed physiological and biochemical responses at multiple levels to allow them to grow and survive under drought stress. Among these, hydrophilins (BSPs, proteins soluble after boiling), representing 0.2% of the total genome, play an important role in the stress adaptation in plants. In this study, we examined the effect of drought on BSPs at different developmental stages of leaves and seeds in drought-tolerant (cv. PBW 175) and drought-susceptible (cv. PBW 621) cultivars of Triticum aestivum. The BSP profiles of seeds were outlined via SDS-PAGE followed by immunoblot analysis using anti-HSP (heat shock protein-90), anti-GST (glutathione S-transferases) and anti-p40 (protein 40). In SDS-PAGE profile, BSPs were detected in a genotype- and treatment-dependent manner. Notably, no BSPs were detected in shoots at any stage, whereas in seeds, many BSPs were detected, indicating organ-specific regulation of BSPs. In western blotting, the induced accumulation of protein bands Bsp40-51 and 59 and presence of differential band of BsHSP44 under drought conditions was observed only in tolerant cv. PBW 175, not in sensitive cv. PBW 621, indicating the roles of such proteins in drought-stress adaptation. BSPs were accumulated at different developmental stages in a cultivar- and stage-dependent manner. The induced expression of different BSPs under drought conditions in tolerant cv. PBW 175 implies the relevance of these BSPs under drought conditions. Notably, the different BSPs were also expressed under normal growth and developmental stages at 57 and 76 days post-anthesis, implying their key role in earlier stages and maturity of grain development.


1997 ◽  
Vol 136 (2) ◽  
pp. 265-275 ◽  
Author(s):  
P. E. KARLSSON ◽  
E. L. MEDIN ◽  
G. WALLIN ◽  
G. SELLDEN ◽  
L. SKARBY

Trees ◽  
1998 ◽  
Vol 12 (8) ◽  
pp. 482 ◽  
Author(s):  
G. Kronfuß ◽  
A. Polle ◽  
M. Tausz ◽  
W. M. Havranek ◽  
G. Wieser

Sign in / Sign up

Export Citation Format

Share Document