Projection-Based Model Reduction Using Asymptotic Basis Functions

Author(s):  
Kevin W. Cassel
Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1382
Author(s):  
Denis Spiridonov ◽  
Maria Vasilyeva ◽  
Aleksei Tyrylgin ◽  
Eric T. Chung

In this paper, we present a multiscale model reduction technique for unsaturated filtration problem in fractured porous media using an Online Generalized Multiscale finite element method. The flow problem in unsaturated soils is described by the Richards equation. To approximate fractures we use the Discrete Fracture Model (DFM). Complex geometric features of the computational domain requires the construction of a fine grid that explicitly resolves the heterogeneities such as fractures. This approach leads to systems with a large number of unknowns, which require large computational costs. In order to develop a more efficient numerical scheme, we propose a model reduction procedure based on the Generalized Multiscale Finite element method (GMsFEM). The GMsFEM allows solving such problems on a very coarse grid using basis functions that can capture heterogeneities. In the GMsFEM, there are offline and online stages. In the offline stage, we construct snapshot spaces and solve local spectral problems to obtain multiscale basis functions. These spectral problems are defined in the snapshot space in each local domain. To improve the accuracy of the method, we add online basis functions in the online stage. The construction of the online basis functions is based on the local residuals. The use of online bases will allow us to get a significant improvement in the accuracy of the method. We present results with different number of offline and online multisacle basis functions. We compare all results with reference solution. Our results show that the proposed method is able to achieve high accuracy with a small computational cost.


1984 ◽  
Vol 17 (24) ◽  
pp. L891-L895 ◽  
Author(s):  
R K Nesbet ◽  
C J Noble ◽  
L A Morgan ◽  
C A Weatherford

Author(s):  
Qian Wang

Probabilistic analysis of practical engineering problems has long been based on traditional sampling-based approaches, such as Monte Carlo Simulations (MCS) and gradient-based first-order and second-order methods. Since the finite element (FE) or other numerical methods are required to evaluate engineering system responses, such as forces or displacements, it is not efficient to directly integrate FE and sampling-based analysis approaches. Over the years, various approximate methods have been developed and applied to the reliability analysis of engineering problems. In this study, an efficient model reduction technique based on high-dimensional model reduction (HDMR) method has been developed using augmented radial basis functions (RBFs). The basic idea is to use augmented RBFs to construct HDMR component functions. The first-order HDMR model only requires sample points along each variable axis. The HDMR model, once created and used to explicitly express a performance function, is further combined with MCS to perform probabilistic calculations. As test problems, a mathematical problem and a 10-bar truss example are studied using the proposed reliability analysis approach. The proposed method works well, and accurate reliability analysis results are found with a small number of original performance function evaluations, i.e., FE simulations.


Author(s):  
Minggang Fei ◽  
Wen Mi ◽  
Yubin Pan

In this paper, we study model reduction by using rational orthogonal bases by consecutively selecting poles for the basis functions. An algorithm modified from adaptive Fourier decomposition (AFD) in Hardy space is presented. In this algorithm, the one-by-one selection of poles makes the numerical algorithm easy to implement, which also keeps the steady-state values equal. The approximating results are comparable to other classical methods.


2017 ◽  
Vol 21 (2) ◽  
pp. 401-422 ◽  
Author(s):  
Eric T. Chung ◽  
Yalchin Efendiev ◽  
Wing Tat Leung

AbstractOffline computation is an essential component in most multiscale model reduction techniques. However, there are multiscale problems in which offline procedure is insufficient to give accurate representations of solutions, due to the fact that offline computations are typically performed locally and global information is missing in these offline information. To tackle this difficulty, we develop an online local adaptivity technique for local multiscale model reduction problems. We design new online basis functions within Discontinuous Galerkin method based on local residuals and some optimally estimates. The resulting basis functions are able to capture the solution efficiently and accurately, and are added to the approximation iteratively. Moreover, we show that the iterative procedure is convergent with a rate independent of physical scales if the initial space is chosen carefully. Our analysis also gives a guideline on how to choose the initial space. We present some numerical examples to show the performance of the proposed method.


2020 ◽  
Vol 54 (6) ◽  
pp. 2011-2043
Author(s):  
Felix Black ◽  
Philipp Schulze ◽  
Benjamin Unger

We propose a new model reduction framework for problems that exhibit transport phenomena. As in the moving finite element method (MFEM), our method employs time-dependent transformation operators and, especially, generalizes MFEM to arbitrary basis functions. The new framework is suitable to obtain a low-dimensional approximation with small errors even in situations where classical model order reduction techniques require much higher dimensions for a similar approximation quality. Analogously to the MFEM framework, the reduced model is designed to minimize the residual, which is also the basis for an a posteriori error bound. Moreover, since the dependence of the transformation operators on the reduced state is nonlinear, the resulting reduced order model is obtained by projecting the original evolution equation onto a nonlinear manifold. Furthermore, for a special case, we show a connection between our approach and the method of freezing, which is also known as symmetry reduction. Besides the construction of the reduced order model, we also analyze the problem of finding optimal basis functions based on given data of the full order solution. Especially, we show that the corresponding minimization problem has a solution and reduces to the proper orthogonal decomposition of transformed data in a special case. Finally, we demonstrate the effectiveness of our method with several analytical and numerical examples.


Sign in / Sign up

Export Citation Format

Share Document