Practical Applications of Multiagent Shepherding for Human-Machine Interaction

Author(s):  
Patrick Nalepka ◽  
Rachel W. Kallen ◽  
Anthony Chemero ◽  
Elliot Saltzman ◽  
Michael J. Richardson
2019 ◽  
Vol 16 (04) ◽  
pp. 1941004 ◽  
Author(s):  
Runze Tong ◽  
Yue Zhang ◽  
Hongfeng Chen ◽  
Honghai Liu

Surface electromyography (sEMG) signals have been widely used in human–machine interaction, providing more nature control expedience for external devices. However, due to the instability of sEMG, it is hard to extract consistent sEMG patterns for motion recognition. This paper proposes a dual-flow network to extract the temporal-spatial feature of sEMG for gesture recognition. The proposed network model uses convolutional neural network (CNN) and long short-term memory methods (LSTM) to, respectively, extract the spatial feature and temporal feature of sEMG, simultaneously. These features extracted by CNN and LSTM are merged into temporal-spatial feature to form an end-to-end network. A dataset was constructed for testing the performance of the network. In this database, the average recognition accuracy by using our dual-flow model reached 78.31%, which was improved by 6.69% compared to the baseline CNN (71.67%). In addition, NinaPro DB1 is also used to evaluate the proposed methods, receiving 1.86% higher recognition accuracy than the baseline CNN classifier. It is believed that the proposed dual-flow network owns the merit in extracting stable sEMG feature for gesture recognition, and can be further applied into practical applications.


2021 ◽  
pp. 1-9
Author(s):  
Harshadkumar B. Prajapati ◽  
Ankit S. Vyas ◽  
Vipul K. Dabhi

Face expression recognition (FER) has gained very much attraction to researchers in the field of computer vision because of its major usefulness in security, robotics, and HMI (Human-Machine Interaction) systems. We propose a CNN (Convolutional Neural Network) architecture to address FER. To show the effectiveness of the proposed model, we evaluate the performance of the model on JAFFE dataset. We derive a concise CNN architecture to address the issue of expression classification. Objective of various experiments is to achieve convincing performance by reducing computational overhead. The proposed CNN model is very compact as compared to other state-of-the-art models. We could achieve highest accuracy of 97.10% and average accuracy of 90.43% for top 10 best runs without any pre-processing methods applied, which justifies the effectiveness of our model. Furthermore, we have also included visualization of CNN layers to observe the learning of CNN.


Author(s):  
Xiaochen Zhang ◽  
Lanxin Hui ◽  
Linchao Wei ◽  
Fuchuan Song ◽  
Fei Hu

Electric power wheelchairs (EPWs) enhance the mobility capability of the elderly and the disabled, while the human-machine interaction (HMI) determines how well the human intention will be precisely delivered and how human-machine system cooperation will be efficiently conducted. A bibliometric quantitative analysis of 1154 publications related to this research field, published between 1998 and 2020, was conducted. We identified the development status, contributors, hot topics, and potential future research directions of this field. We believe that the combination of intelligence and humanization of an EPW HMI system based on human-machine collaboration is an emerging trend in EPW HMI methodology research. Particular attention should be paid to evaluating the applicability and benefits of the EPW HMI methodology for the users, as well as how much it contributes to society. This study offers researchers a comprehensive understanding of EPW HMI studies in the past 22 years and latest trends from the evolutionary footprints and forward-thinking insights regarding future research.


ATZ worldwide ◽  
2021 ◽  
Vol 123 (3) ◽  
pp. 46-49
Author(s):  
Tobias Hesse ◽  
Michael Oehl ◽  
Uwe Drewitz ◽  
Meike Jipp

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 834
Author(s):  
Magbool Alelyani ◽  
Sultan Alamri ◽  
Mohammed S. Alqahtani ◽  
Alamin Musa ◽  
Hajar Almater ◽  
...  

Artificial intelligence (AI) is a broad, umbrella term that encompasses the theory and development of computer systems able to perform tasks normally requiring human intelligence. The aim of this study is to assess the radiology community’s attitude in Saudi Arabia toward the applications of AI. Methods: Data for this study were collected using electronic questionnaires in 2019 and 2020. The study included a total of 714 participants. Data analysis was performed using SPSS Statistics (version 25). Results: The majority of the participants (61.2%) had read or heard about the role of AI in radiology. We also found that radiologists had statistically different responses and tended to read more about AI compared to all other specialists. In addition, 82% of the participants thought that AI must be included in the curriculum of medical and allied health colleges, and 86% of the participants agreed that AI would be essential in the future. Even though human–machine interaction was considered to be one of the most important skills in the future, 89% of the participants thought that it would never replace radiologists. Conclusion: Because AI plays a vital role in radiology, it is important to ensure that radiologists and radiographers have at least a minimum understanding of the technology. Our finding shows an acceptable level of knowledge regarding AI technology and that AI applications should be included in the curriculum of the medical and health sciences colleges.


Sign in / Sign up

Export Citation Format

Share Document