A Glimpse at Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics

Author(s):  
Rafal Goebel
2016 ◽  
Vol 26 (4) ◽  
pp. 551-563
Author(s):  
Tadeusz Kaczorek

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.


2009 ◽  
Vol 19 (11) ◽  
pp. 3829-3832
Author(s):  
ABRAHAM BOYARSKY ◽  
PAWEŁ GÓRA

We consider dynamical systems on time domains that alternate between continuous time intervals and discrete time intervals. The dynamics on the continuous portions may represent species growth when there is population overlap and are governed by differential or partial differential equations. The dynamics across the discrete time intervals are governed by a chaotic map and may represent population growth which is seasonal. We study the long term dynamics of this combined system. We study various conditions on the continuous time dynamics and discrete time dynamics that produce chaos and alternatively nonchaos for the combined system. When the discrete system alone is chaotic we provide a condition on the continuous dynamical component such that the combined system behaves chaotically. We also provide a condition that ensures that if the discrete time system has an absolutely continuous invariant measure so will the combined system. An example based on the logistic continuous time and logistic discrete time component is worked out.


2021 ◽  
Vol 62 ◽  
pp. 148-184
Author(s):  
Amie Albrecht ◽  
Konstantin Avrachenkov ◽  
Phil Howlett ◽  
Geetika Verma

The population dynamics for the replicator equation has been well studied in continuous time, but there is less work that explicitly considers the evolution in discrete time. The discrete-time dynamics can often be justified indirectly by establishing the relevant evolutionary dynamics for the corresponding continuous-time system, and then appealing to an appropriate approximation property. In this paper we study the discrete-time system directly, and establish basic stability results for the evolution of a population defined by a positive definite system matrix, where the population is disrupted by random perturbations to the genotype distribution either through migration or mutation, in each successive generation. doi: 10.1017/S1446181120000140


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1186 ◽  
Author(s):  
Bin Liu ◽  
Bo Xu ◽  
Guohua Zhang ◽  
Lisheng Tong

This paper aims to review some uniform stability results for impulsive systems. For the review, we classify the models of impulsive systems into time-based impulsive systems and state-based ones, including continuous-time impulsive systems, discrete-time impulsive systems, stochastic impulsive systems, and impulsive hybrid systems. According to these models, we review, respectively, the related stability concepts and some representative results focused on uniform stability, including the results on uniform asymptotic stability, input-to-state stability (ISS), KLL -stability (uniform stability expressed by KLL -functions), event-stability, and event-ISS. And we formulate some questions for those not fully developed aspects on uniform stability at each subsection.


Author(s):  
Rafal Goebel ◽  
Ricardo G. Sanfelice ◽  
Andrew R. Teel

Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms—algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, this book unifies and generalizes earlier developments in continuous-time and discrete-time nonlinear systems. It presents hybrid system versions of the necessary and sufficient Lyapunov conditions for asymptotic stability, invariance principles, and approximation techniques, and examines the robustness of asymptotic stability, motivated by the goal of designing robust hybrid control algorithms. This self-contained and classroom-tested book requires standard background in mathematical analysis and differential equations or nonlinear systems. It will interest graduate students in engineering as well as students and researchers in control, computer science, and mathematics.


2015 ◽  
Vol 30 ◽  
pp. 905-915 ◽  
Author(s):  
Taner Buyukkoroglu ◽  
Gokhan Celebi ◽  
Vakif Dzhafarov

In this study, the problem of robust asymptotic stability of n by n polynomial matrix family, in both continuous-time and discrete-time cases, is considered. It is shown that in the continuous case the problem can be reduced to positivity of two specially constructed multivariable polynomials, whereas in the discrete-time case it is required three polynomials. A number of examples are given, where the Bernstein expansion method and sufficient conditions from [L.H. Keel and S.P. Bhattacharya. Robust stability via sign-definite decomposition. IEEE Transactions on Automatic Control, 56(1):140–145, 2011.] are applied to test positivity of the obtained multivariable polynomials. Sufficient conditions for matrix polytopes and one interesting negative result for companion matrices are also considered.


2019 ◽  
Vol 14 (4) ◽  
pp. 402 ◽  
Author(s):  
Christian Kuehn

We study the multiscale structure of the Jain–Krishna adaptive network model. This model describes the co-evolution of a set of continuous-time autocatalytic ordinary differential equations and its underlying discrete-time graph structure. The graph dynamics is governed by deletion of vertices with asymptotically weak concentrations of prevalence and then re-insertion of vertices with new random connections. In this work, we prove several results about convergence of the continuous-time dynamics to equilibrium points. Furthermore, we motivate via formal asymptotic calculations several conjectures regarding the discrete-time graph updates. In summary, our results clearly show that there are several time scales in the problem depending upon system parameters, and that analysis can be carried out in certain singular limits. This shows that for the Jain–Krishna model, and potentially many other adaptive network models, a mixture of deterministic and/or stochastic multiscale methods is a good approach to work towards a rigorous mathematical analysis.


2007 ◽  
Vol 17 (2) ◽  
pp. 261-276 ◽  
Author(s):  
HUBERT KRIVINE ◽  
ANNICK LESNE ◽  
JACQUES TREINER

The relationship between continuous-time dynamics and the corresponding discrete schemes, and its generally limited validity, is an important and widely acknowledged field within numerical analysis. In this paper, we propose another, more physical, viewpoint on this topic in order to understand the possible failure of discretisation procedures and the way to fix it. Three basic examples, the logistic equation, the Lotka–Volterra predator–prey model and Newton's law for planetary motion, are worked out. They illustrate the deep difference between continuous-time evolutions and discrete-time mappings, hence shedding some light on the more general duality between continuous descriptions of natural phenomena and discrete numerical computations.


2020 ◽  
Vol 62 (2) ◽  
pp. 148-184
Author(s):  
AMIE ALBRECHT ◽  
KONSTANTIN AVRACHENKOV ◽  
PHIL HOWLETT ◽  
GEETIKA VERMA

AbstractThe population dynamics for the replicator equation has been well studied in continuous time, but there is less work that explicitly considers the evolution in discrete time. The discrete-time dynamics can often be justified indirectly by establishing the relevant evolutionary dynamics for the corresponding continuous-time system, and then appealing to an appropriate approximation property. In this paper we study the discrete-time system directly, and establish basic stability results for the evolution of a population defined by a positive definite system matrix, where the population is disrupted by random perturbations to the genotype distribution either through migration or mutation, in each successive generation.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yanping Gao ◽  
Bo Liu ◽  
Min Zuo ◽  
Tongqiang Jiang ◽  
Junyan Yu

This paper studies the consensus problem of multiple agents with general linear continuous-time dynamics. It is assumed that the information transmission among agents is intermittent; namely, each agent can only obtain the information of other agents at some discrete times, where the discrete time intervals may not be equal. Some sufficient conditions for consensus in the cases of state feedback and static output feedback are established, and it is shown that if the controller gain and the upper bound of discrete time intervals satisfy certain linear matrix inequality, then consensus can be reached. Simulations are performed to validate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document