Discrete-time and continuous-time modelling: some bridges and gaps

2007 ◽  
Vol 17 (2) ◽  
pp. 261-276 ◽  
Author(s):  
HUBERT KRIVINE ◽  
ANNICK LESNE ◽  
JACQUES TREINER

The relationship between continuous-time dynamics and the corresponding discrete schemes, and its generally limited validity, is an important and widely acknowledged field within numerical analysis. In this paper, we propose another, more physical, viewpoint on this topic in order to understand the possible failure of discretisation procedures and the way to fix it. Three basic examples, the logistic equation, the Lotka–Volterra predator–prey model and Newton's law for planetary motion, are worked out. They illustrate the deep difference between continuous-time evolutions and discrete-time mappings, hence shedding some light on the more general duality between continuous descriptions of natural phenomena and discrete numerical computations.

2019 ◽  
Author(s):  
Daniel Tang

Agent-based models are a powerful tool for studying the behaviour of complex systems that can be described in terms of multiple, interacting ``agents''. However, because of their inherently discrete and often highly non-linear nature, it is very difficult to reason about the relationship between the state of the model, on the one hand, and our observations of the real world on the other. In this paper we consider agents that have a discrete set of states that, at any instant, act with a probability that may depend on the environment or the state of other agents. Given this, we show how the mathematical apparatus of quantum field theory can be used to reason probabilistically about the state and dynamics the model, and describe an algorithm to update our belief in the state of the model in the light of new, real-world observations. Using a simple predator-prey model on a 2-dimensional spatial grid as an example, we demonstrate the assimilation of incomplete, noisy observations and show that this leads to an increase in the mutual information between the actual state of the observed system and the posterior distribution given the observations, when compared to a null model.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhihua Chen ◽  
Qamar Din ◽  
Muhammad Rafaqat ◽  
Umer Saeed ◽  
Muhammad Bilal Ajaz

Selective harvesting plays an important role on the dynamics of predator-prey interaction. On the other hand, the effect of predator self-limitation contributes remarkably to the stabilization of exploitative interactions. Keeping in view the selective harvesting and predator self-limitation, a discrete-time predator-prey model is discussed. Existence of fixed points and their local dynamics is explored for the proposed discrete-time model. Explicit principles of Neimark–Sacker bifurcation and period-doubling bifurcation are used for discussion related to bifurcation analysis in the discrete-time predator-prey system. The control of chaotic behavior is discussed with the help of methods related to state feedback control and parameter perturbation. At the end, some numerical examples are presented for verification and illustration of theoretical findings.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
K. S. Al-Basyouni ◽  
A. Q. Khan

In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-prey model have been explored in ℝ + 2 . It is proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point, and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model. Finally, existence of periodic points at fixed points for the model is also explored.


2009 ◽  
Vol 19 (11) ◽  
pp. 3829-3832
Author(s):  
ABRAHAM BOYARSKY ◽  
PAWEŁ GÓRA

We consider dynamical systems on time domains that alternate between continuous time intervals and discrete time intervals. The dynamics on the continuous portions may represent species growth when there is population overlap and are governed by differential or partial differential equations. The dynamics across the discrete time intervals are governed by a chaotic map and may represent population growth which is seasonal. We study the long term dynamics of this combined system. We study various conditions on the continuous time dynamics and discrete time dynamics that produce chaos and alternatively nonchaos for the combined system. When the discrete system alone is chaotic we provide a condition on the continuous dynamical component such that the combined system behaves chaotically. We also provide a condition that ensures that if the discrete time system has an absolutely continuous invariant measure so will the combined system. An example based on the logistic continuous time and logistic discrete time component is worked out.


Sign in / Sign up

Export Citation Format

Share Document