On the Robust Stability of Polynomial Matrix Families

2015 ◽  
Vol 30 ◽  
pp. 905-915 ◽  
Author(s):  
Taner Buyukkoroglu ◽  
Gokhan Celebi ◽  
Vakif Dzhafarov

In this study, the problem of robust asymptotic stability of n by n polynomial matrix family, in both continuous-time and discrete-time cases, is considered. It is shown that in the continuous case the problem can be reduced to positivity of two specially constructed multivariable polynomials, whereas in the discrete-time case it is required three polynomials. A number of examples are given, where the Bernstein expansion method and sufficient conditions from [L.H. Keel and S.P. Bhattacharya. Robust stability via sign-definite decomposition. IEEE Transactions on Automatic Control, 56(1):140–145, 2011.] are applied to test positivity of the obtained multivariable polynomials. Sufficient conditions for matrix polytopes and one interesting negative result for companion matrices are also considered.

2013 ◽  
Vol 61 (2) ◽  
pp. 343-347 ◽  
Author(s):  
T. Kaczorek

Abstract The asymptotic stability of positive switched linear systems for any switchings is addressed. Simple sufficient conditions for the asymptotic stability of positive switched continuous-time and discrete-time linear systems are established. It is shown that the positive switched continuous-time (discrete-time) system is asymptotically stable for any switchings if the sum of entries of every column of the matrices of subsystems is negative (less than 1)


Author(s):  
Przemysław Przyborowski ◽  
Tadeusz Kaczorek

Positive 2D Discrete-Time Linear Lyapunov SystemsTwo models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.


2002 ◽  
Vol 12 (02) ◽  
pp. 137-148
Author(s):  
K. GOPALSAMY ◽  
S. MOHAMAD

The convergence characteristics of a single dissipative Hopfield-type neuron with self-interaction under periodic external stimuli are considered. Sufficient conditions are established for associative encoding and recall of the periodic patterns associated with the external stimuli. Both continuous-time-continuous-state and discrete-time-continuous-state models are discussed. It is shown that when the neuronal gain is dominated by the neuronal dissipation on average, associative recall of the encoded temporal pattern is guaranteed and this is achieved by the global asymptotic stability of the encoded pattern.


2019 ◽  
Vol 41 (15) ◽  
pp. 4197-4206 ◽  
Author(s):  
Jumei Wei ◽  
Huimin Zhi ◽  
Kai Liu

In this paper, the problem of the E-exponential stability and [Formula: see text] analysis of linear switched singular systems is investigated in discrete-time case. By using a multiple discontinuous Lyapunov function approach and adopting the mode-dependent average dwell time (MDADT) switching signals, new sufficient conditions of E-exponential stability and [Formula: see text] analysis for linear switched singular systems are presented. Based on the above results, we also derive the weighted [Formula: see text] performance index. In addition, by utilizing our proposed method, tighter bounds on average dwell time can be obtained for our considered systems. At last, a numerical example is given to show the effectiveness of the results.


2016 ◽  
Vol 26 (4) ◽  
pp. 551-563
Author(s):  
Tadeusz Kaczorek

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.


2013 ◽  
Vol 61 (2) ◽  
pp. 349-352
Author(s):  
T. Kaczorek

Abstract The asymptotic stability of positive fractional switched continuous-time linear systems for any switching is addressed. Simple sufficient conditions for the asymptotic stability of the positive fractional systems are established. It is shown that the positive fractional switched systems are asymptotically stable for any switchings if the sum of entries of every column of the matrices of all subsystems is negative.


2006 ◽  
Vol 43 (01) ◽  
pp. 289-295 ◽  
Author(s):  
Zenghu Li

We provide a simple set of sufficient conditions for the weak convergence of discrete-time, discrete-state Galton-Watson branching processes with immigration to continuous-time, continuous-state branching processes with immigration.


2006 ◽  
Vol 43 (04) ◽  
pp. 1044-1052 ◽  
Author(s):  
Nico M. Van Dijk ◽  
Karel Sladký

As an extension of the discrete-time case, this note investigates the variance of the total cumulative reward for continuous-time Markov reward chains with finite state spaces. The results correspond to discrete-time results. In particular, the variance growth rate is shown to be asymptotically linear in time. Expressions are provided to compute this growth rate.


Sign in / Sign up

Export Citation Format

Share Document