Projections of Maximum Tidal Inundation Limits of Estuaries and Lagoons of the South Algarve, Forced by Mean Sea Level Rise: RCP8.5 Scenario

INCREaSE 2019 ◽  
2019 ◽  
pp. 56-75
Author(s):  
Dissanayake Sampath ◽  
Tomasz Boski ◽  
Delminda Moura ◽  
Cristina Veiga-Pires
2021 ◽  
Vol 9 (2) ◽  
pp. 205
Author(s):  
Serafino Afonso Rui Mucova ◽  
Ulisses Miranda Azeiteiro ◽  
Walter Leal Filho ◽  
Carina Lurdes Lopes ◽  
João Miguel Dias ◽  
...  

Mean sea-level is expected to rise significantly by 2100 in all scenarios, including those compatible with the objectives of the Paris Climate Agreement. Global sea level rise projections indicate devastating implications for populations, ecosystem services and biodiversity. The implications of the sea-level rise (SLR) on low-lying islands and coastal regions and communities are substantial and require deep-rooted coping measures. In the absence of adequate responses for coping, Mozambique is expected to record huge losses, with an impact on the economy and development in many sectors of its coastal regions mainly in northern Mozambique. This research aimed to perform projections on SLR in Mozambique, and to understand its role and implications on the north coast of the country. SLR was estimated through the analysis of model outputs that support the global estimates of the fifth IPCC report near the Mozambican coast, for each of the four representative concentration pathways (RCPs) scenarios. Regional coastline retreat and coastal erosion were estimated through the results of global sandy coastlines projections developed by Vousdoukas. Mean sea-level rise projections indicate that regional estimates for the Mozambican coast are relative higher than global estimates (~0.05 m) for all representative concentration pathways (RCPs). Yet, we highlight significant differences in sea-level rises of 0.5 m, 0.7 m or 1.0 m by 2100 compared to the global mean. It is expected that with the increase in the mean sea level in the northern part of the Mozambican coast, erosive effects will increase, as well as the retreat of the coastline until 2100. With this, the tourism sector, settlements, ecosystem services and local populations are expected to be significantly affected by 2050, with increased threats in 2100 (RCP4.5, RCP8.5). Local responses for coping are proposed and properly discussed for the RCP4.5 and RCP8.5 scenarios through 2100.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


Bothalia ◽  
1994 ◽  
Vol 24 (2) ◽  
pp. 223-228
Author(s):  
M. O'Callaghan

The lower Berg River supports approximately 250 ha of estuarine saltmarsh vegetation. Species distribution patterns, as sampled along six transects, are described. Elevation above mean sea level (MSL) is proposed as a strong determinant of these patterns. However, there are no typical patterns. The patchy and irregular distribution patterns possibly result from an inconsistent relationship between species distribution and salinity, tidal inundation and/or competitive interactions.


1978 ◽  
Vol 1 (16) ◽  
pp. 53
Author(s):  
J. Graff ◽  
D.L. Blackman

Along the south coast of England, series of observed annual maximum sea levels, ranging from 16 years to 125 years have been analysed for each of 10 ports. The Jenkinson method of analysis was used to compute the frequency of recurrence of extreme levels. For a number of these ports the series of annual maxima are shown to have significant trends of the same order as those for mean sea level. The Jenkinson method can be simply adjusted to cope with maxima having a component linear trend, making it possible to allow for such trends in computing the frequency of recurrence of extreme levels. If a trend in the annual maxima varies throughout the sample of observations it is shown that difficulties arise in using the Jenkinson method to compute acceptable statistics. It is also shown that for certain ports having long series of observed annual maxima it may be necessary to restrict the sample size of observations in order to compute estimates of the recurrence of extreme levels within reasonable return periods.


2019 ◽  
Vol 47 (1) ◽  
pp. 23-43 ◽  
Author(s):  
Jennifer D. Ruiz-Ramírez ◽  
Jorge I. Euán-Ávila ◽  
Víctor H. Rivera-Monroy

2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


Sign in / Sign up

Export Citation Format

Share Document