A Method for Extracting and Simplifying the Stray Capacitance Matrix of the Dry-Type Smoothing Reactor

Author(s):  
Tingting Li ◽  
Shaoyan Gong ◽  
Feng Ji ◽  
Chong Gao ◽  
Jianhui Zhou
2019 ◽  
Vol 139 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Shotaro Takahashi ◽  
Satoshi Ogasawara ◽  
Masatsugu Takemoto ◽  
Koji Orikawa ◽  
Michio Tamate

2001 ◽  
Vol 21 (3) ◽  
pp. 231-243 ◽  
Author(s):  
B. N. Das, Debashis Parida ◽  
S. Das ◽  
G. Panda

Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1090 ◽  
Author(s):  
Jordi-Roger Riba ◽  
Francesca Capelli

Stray capacitance can seriously affect the behavior of high-voltage devices, including voltage dividers, insulator strings, modular power supplies, or measuring instruments, among others. Therefore its effects must be considered when designing high-voltage projects and tests. Due to the difficulty in measuring the effects of stray capacitance, there is a lack of available experimental data. Therefore, for engineers and researchers there is a need to revise and update the available information, as well as to have useful and reliable data to estimate the stray capacitance in the initial designs. Although there are some analytical formulas to calculate the capacitance of some simple geometries, they have a limited scope. However, since such formulas can deal with different geometries and operating conditions, it is necessary to assess their consistency and applicability. This work calculates the stray capacitance to ground for geometries commonly found in high-voltage laboratories and facilities, including wires or rods of different lengths, spheres and circular rings, the latter ones being commonly applied as corona protections. This is carried out by comparing the results provided by the available analytical formulas with those obtained from finite element method (FEM) simulation, since field simulation methods allow solving such problem. The results of this work prove the suitability and flexibility of the FEM approach, because FEM models can deal with wider range of electrodes, configurations and operating conditions.


Author(s):  
Toshihide IDE ◽  
Mitsuaki Shimizu ◽  
Noriyuki TAKADA

Abstract We establish the method for estimating the stray elements of the GaN-WPT circuit by measuring the radiated emission around the GaN switching device. By controlling the circuit supply voltage, the spectrum peak shift due to the output capacitance of the GaN-HEMT is observed. It is found that these peak shift characteristics include the influence of both the stray wire inductance and stray capacitance. By the fitting using the series resonance model, the value of the stray inductance and stray capacitance can be estimated in the non-destructive measurement in the GaN-WPT circuit.


Sign in / Sign up

Export Citation Format

Share Document