Unsupervised Feature Selection via Adaptive Embedding and Sparse Learning for Parkinson’s Disease Diagnosis

Author(s):  
Zhongwei Huang ◽  
Haijun Lei ◽  
Guoliang Chen ◽  
Shiqi Li ◽  
Hancong Li ◽  
...  
Author(s):  
Mazin Abed Mohammed ◽  
Mohamed Elhoseny ◽  
Karrar Hameed Abdulkareem ◽  
Salama A. Mostafa ◽  
Mashael S. Maashi

Parkinson's disease (PD) diagnostics includes numerous analyses related to the neurological, physical, and psychical status of the patient. Medical teams analyze multiple symptoms and patient history considering verified genetic influences. The proposed method investigates the voice symptoms of this disease. The voice files are processed, and the feature extraction is conducted. Several machine learning techniques are used to recognize Parkinson's and healthy patients. This study focuses on examining PD diagnosis through voice data features. A new multi-agent feature filter (MAFT) algorithm is proposed to select the best features from the voice dataset. The MAFT algorithm is designed to select a set of features to improve the overall performance of prediction models and prevent over-fitting possibly due to extreme reduction to the features. Moreover, this algorithm aims to reduce the complexity of the prediction, accelerate the training phase, and build a robust training model. Ten different machine learning methods are then integrated with the MAFT algorithm to form a powerful voice-based PD diagnosis model. Recorded test results of the PD prediction model using the actual and filtered features yielded 86.38% and 86.67% accuracies on average, respectively. With the aid of the MAFT feature selection, the test results are improved by 3.2% considering the hybrid model (HM) and 3.1% considering the Naïve Bayesian and random forest. Subsequently, an HM, which comprises a binary convolutional neural network and three feature selection algorithms (namely, genetic algorithm, Adam optimizer, and mini-batch gradient descent), is proposed to improve the classification accuracy of the PD. The results reveal that PD achieves an overall accuracy of 93.7%. The HM is integrated with the MAFT, and the combination realizes an overall accuracy of 96.9%. These results demonstrate that the combination of the MAFT algorithm and the HM model significantly enhances the PD diagnosis outcomes.


Author(s):  
Yareth Gopar-Cuevas ◽  
Ana P. Duarte-Jurado ◽  
Rosa N. Diaz-Perez ◽  
Odila Saucedo-Cardenas ◽  
Maria J. Loera-Arias ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


2021 ◽  
Author(s):  
Shengfang Song ◽  
Zhehui Luo ◽  
Chenxi Li ◽  
Xuemei Huang ◽  
Eric J. Shiroma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document