Making Food with the Mind: Integrating Brain-Computer Interface and 3D Food Fabrication

Author(s):  
Nutchanon Ninyawee ◽  
Tawan Thintawornkul ◽  
Pat Pataranutaporn ◽  
Bank Ngamarunchot ◽  
Sirawaj Sean Itthipuripat ◽  
...  

A brain-computer interface (BCI) gives a correspondence channel that interconnects the mind with an outside device. The most generally utilized system for getting BCI control signals from the brain is the electroencephalogram (EEG). In the proposed paper, BCI framework towards an EEG chronicles are reviewed into and found that the expansion of a counterfeit motion toward it, which is brought about by eye flickers, eye development, muscle and cardiovascular commotion, just as non-natural sources (e.g., control line clamor). According to the writing survey it is discovered that these issues can be overwhelmed by utilizing mix of wavelet deterioration, independent component analysis (ICA), and thresholding


2015 ◽  
Vol 78 (6-6) ◽  
Author(s):  
Esmeralda Contessa Djamal ◽  
Suprijanto Suprijanto ◽  
Steven J. Setiadi

In the development of Brain Computer Interface (BCI), one important issue is the classification of hand grasping imagination. It is helpful for realtime control of the robotic or a game of the mind. BCI uses EEG signal to get information on the human. This research proposed methods to classify EEG signal against hand grasping imagination using Neural Networks.  EEG signal was recorded in ten seconds of four subjects each four times that were asked to imagine three classes of grasping (grasp, loose, and relax). Four subjects used as training data and four subjects as testing data. First, EEG signal was modeled in order 20 Autoregressive (AR) so that got AR coefficients being passed Neural Networks. The order of the AR model chosen based optimization gave a small error that is 1.96%. Then, it has developed a classification system using multilayer architecture and Adaptive Backpropagation as training algorithm. Using AR made training of the system more stable and reduced oscillation. Besides, the use of the AR model as a representation of the EEG signal improved the classification system accuracy of 68% to 82%. To verify the performance improvement of the proposed classification scheme, a comparison of the Adaptive Backpropagation and the conventional Backpropagation in training of the system. It resulted in an increase accuracy of 76% to 82%. The system was validated against all training data that produced an accuracy of 91%. The classification system that has been implemented in the software so that can be used as the brain computer interface.  


2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Sign in / Sign up

Export Citation Format

Share Document