scholarly journals Automated Artifact Removal in EEG Signals of Brain Computer Interface using Wavelets and ICA

A brain-computer interface (BCI) gives a correspondence channel that interconnects the mind with an outside device. The most generally utilized system for getting BCI control signals from the brain is the electroencephalogram (EEG). In the proposed paper, BCI framework towards an EEG chronicles are reviewed into and found that the expansion of a counterfeit motion toward it, which is brought about by eye flickers, eye development, muscle and cardiovascular commotion, just as non-natural sources (e.g., control line clamor). According to the writing survey it is discovered that these issues can be overwhelmed by utilizing mix of wavelet deterioration, independent component analysis (ICA), and thresholding

2021 ◽  
Vol 2078 (1) ◽  
pp. 012044
Author(s):  
Lingzhi Chen ◽  
Wei Deng ◽  
Chunjin Ji

Abstract Pattern Recognition is the most important part of the brain computer interface (BCI) system. More and more profound learning methods were applied in BCI to increase the overall quality of pattern recognition accuracy, especially in the BCI based on Electroencephalogram (EEG) signal. Convolutional Neural Networks (CNN) holds great promises, which has been extensively employed for feature classification in BCI. This paper will review the application of the CNN method in BCI based on various EEG signals.


2015 ◽  
Vol 75 (4) ◽  
Author(s):  
Faris Amin M. Abuhashish ◽  
Hoshang Kolivand ◽  
Mohd Shahrizal Sunar ◽  
Dzulkifli Mohamad

A Brain-Computer Interface (BCI) is the device that can read and acquire the brain activities. A human body is controlled by Brain-Signals, which considered as a main controller. Furthermore, the human emotions and thoughts will be translated by brain through brain signals and expressed as human mood. This controlling process mainly performed through brain signals, the brain signals is a key component in electroencephalogram (EEG). Based on signal processing the features representing human mood (behavior) could be extracted with emotion as a major feature. This paper proposes a new framework in order to recognize the human inner emotions that have been conducted on the basis of EEG signals using a BCI device controller. This framework go through five steps starting by classifying the brain signal after reading it in order to obtain the emotion, then map the emotion, synchronize the animation of the 3D virtual human, test and evaluate the work. Based on our best knowledge there is no framework for controlling the 3D virtual human. As a result for implementing our framework will enhance the game field of enhancing and controlling the 3D virtual humans’ emotion walking in order to enhance and bring more realistic as well. Commercial games and Augmented Reality systems are possible beneficiaries of this technique.


2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Ahmad Reza Musthafa ◽  
Handayani Tjandrasa

Abstract. Electroencephalogram (EEG) signals has been widely researched and developed in many fields of science. EEG signals could be classified into useful information for the application of Brain Computer Interface topic (BCI). In this research, we focus in a topic about driving a car using EEG signal. There are many approaches in EEG signal classification, but some approaches do not robust EEG signals that have many artifacts and have been recorded in real time. This research aims to classify EEG signals to obtain more optimal results, especially EEG signals with many artifacts and can be recorded in realtime. This research uses Emotiv EPOC device to record EEG signals in realtime. In this research, we propose the combination of Automatic Artifact Removal (AAR) and Support Vector Machine (SVM) which has 71% of accuracy that can be applied to drive a virtual car.Keyword: EEG signal classification, automatic artifact removal, brain computer interface Abstrak. Penelitian berbasis sinyal Electroencephalogram (EEG) telah banyak diteliti dan dikembangkan pada berbagai bidang ilmu pengetahuan. Sinyal EEG dapat diklasifikasikan ke dalam bentuk informasi untuk pengaplikasian topik Brain Computer Interface (BCI). Pada penelitian ini difokuskan pada topik pengendalian mobil menggunakan perintah sinyal EEG. Terdapat beberapa pendekatan dalam klasifikasi sinyal EEG, tetapi beberapa pendekatan tersebut tidak robust terhadap sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini bertujuan untuk mengklasifikasikan sinyal EEG dengan hasil lebih optimal, khususnya pada sinyal EEG yang memiliki banyak artefak dan direkam secara realtime. Penelitian ini menggunakan perangkat Emotiv EPOC untuk merekam sinyal EEG secara realtime. Pada penelitian ini diusulkan kombinasi Automatic Artifact Removal (AAR) dan Support Vector Machine (SVM) yang menghasilkan hasil akurasi sebesar 71% untuk klasifikasi sinyal EEG pada kasus pengendalian mobil virtual.Kata Kunci: EEG signal classification, automatic artifact removal, brain computer interface


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


Author(s):  
Wei-Yen Hsu

In this chapter, a practical artifact removal Brain-Computer Interface (BCI) system for single-trial Electroencephalogram (EEG) data is proposed for applications in neuroprosthetics. Independent Component Analysis (ICA) combined with the use of a correlation coefficient is proposed to remove the EOG artifacts automatically, which can further improve classification accuracy. The features are then extracted from wavelet transform data by means of the proposed modified fractal dimension. Finally, Support Vector Machine (SVM) is used for the classification. When compared with the results obtained without using the EOG signal elimination, the proposed BCI system achieves promising results that will be effectively applied in neuroprosthetics.


2014 ◽  
Vol 490-491 ◽  
pp. 1374-1377 ◽  
Author(s):  
Xiao Yan Qiao ◽  
Jia Hui Peng

It is a significant issue to accurately and quickly extract brain evoked potentials under strong noise in the research of brain-computer interface technology. Considering the non-stationary and nonlinearity of the electroencephalogram (EEG) signal, the method of wavelet transform is adopted to extract P300 feature from visual, auditory and visual-auditory evoked EEG signal. Firstly, the imperative pretreatment to EEG acquisition signals was performed. Secondly, respectivly obtained approximate and detail coefficients of each layer, by decomposing the pretreated signals for five layers using wavelet transform. Finally, the approximate coefficients of the fifth layer were reconstructed to extract P300 feature. The results have shown that the method can effectively extract the P300 feature under the different visual-auditory stimulation modes and lay a foundation for processing visual-auditory evoked EEG signals under the different mental tasks.


2020 ◽  
Vol 8 (6) ◽  
pp. 1275-1282

A brain-computer interface (BCI) provides a communication passage between the brain and an external stratagem. The Brain and its EEG signals are acquired from the BCI along its control signals and its widely used mechanism in the field of the biomedical fields. In this research work, an artifacts are removed algorithm in the EEG is developed and simulated in the MATLAB 2017a software tool. EEG signals from patients are recoded while recording some of the artificial signals added to it, which are instigated by using eye blinks, eye movement, muscle, and cardiac noise, and also non-biological sources. Using suitable filters these artificial signals can be removed. This paper aims to remove the artificial signals from EEG signals and parameters like mean, standard. Deviation are calculated and compared with other methods such as LAMICA and FASTERs. In the paper, it is also the proposed arrangement of EEG signals for the discovery of typical and anomalous exercises utilizing Wavelet change and Artificial Neural Network (ANN) Classifier is considered. Here, the framework utilizes the back proliferation with feed-forward for order which pursues the ANN grouping. Accuracy of the classification is calculated and compared with other states of art publications and found that it is better.


Author(s):  
Subrota Mazumdar ◽  
Rohit Chaudhary ◽  
Suruchi Suruchi ◽  
Suman Mohanty ◽  
Divya Kumari ◽  
...  

In this chapter, a nearest neighbor (k-NN)-based method for efficient classification of motor imagery using EEG for brain-computer interfacing (BCI) applications has been proposed. Electroencephalogram (EEG) signals are obtained from multiple channels from brain. These EEG signals are taken as input features and given to the k-NN-based classifier to classify motor imagery. More specifically, the chapter gives an outline of the Berlin brain-computer interface that can be operated with minimal subject change. All the design and simulation works are carried out with MATLAB software. k-NN-based classifier is trained with data from continuous signals of EEG channels. After the network is trained, it is tested with various test cases. Performance of the network is checked in terms of percentage accuracy, which is found to be 99.25%. The result suggested that the proposed method is accurate for BCI applications.


Author(s):  
Xiao Zhang ◽  
Dongrui Wu ◽  
Lieyun Ding ◽  
Hanbin Luo ◽  
Chin-Teng Lin ◽  
...  

Abstract An electroencephalogram (EEG)-based brain–computer interface (BCI) speller allows a user to input text to a computer by thought. It is particularly useful to severely disabled individuals, e.g. amyotrophic lateral sclerosis patients, who have no other effective means of communication with another person or a computer. Most studies so far focused on making EEG-based BCI spellers faster and more reliable; however, few have considered their security. This study, for the first time, shows that P300 and steady-state visual evoked potential BCI spellers are very vulnerable, i.e. they can be severely attacked by adversarial perturbations, which are too tiny to be noticed when added to EEG signals, but can mislead the spellers to spell anything the attacker wants. The consequence could range from merely user frustration to severe misdiagnosis in clinical applications. We hope our research can attract more attention to the security of EEG-based BCI spellers, and more broadly, EEG-based BCIs, which has received little attention before.


Sign in / Sign up

Export Citation Format

Share Document