Formal Verification of an Industrial Safety-Critical Traffic Tunnel Control System

Author(s):  
Wytse Oortwijn ◽  
Marieke Huisman
Author(s):  
Pierre-Loïc Garoche

The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. This book provides control engineers and computer scientists with an introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. The book provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. It presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.


Author(s):  
R.I. Fatkhutdinov ◽  
◽  

One of the main causes of accidents at hazardous production facilities of oil and gas production is the inefficient work of production control over compliance with industrial safety requirements. At present there are no criteria for its assessment in the Russian legislation. It is established in the study that that production control in the industrial safety management system performs the role of «control» in accordance with the Shewhart-Deming cycle PDCA, and its main function is to work with nonconformities. In connection with the above, it is proposed to approach production control not only from the point of view of the process, but also from the system approach. To assess the system functioning, the criteria of «effectiveness», «efficiency», «integral indicator» are considered. It is established that from the point of view of proactivity in achieving the goals of production control, the most preferable is the assessment of the integral indicator of the production control system functioning. The considered existing and possible approaches to the assessment of the production control system and the statistical processing of the results of the expert assessment of nineteen parameters confirmed the need for a systematic approach. Based on this, the hypothesis of the production control system functioning is proposed and statistically substantiated, and four main parameters for calculating the integral indicator of the production control system functioning are considered. The built mathematical model based on the fuzzy logic clearly demonstrates the dependence of the integral indicator of the production control system functioning on the considered input parameters. The proposed proactive approach to the assessment of the production control system through nonconformity management is universal and applicable to the «control» function of any control system. It can also be used in the work of Rostechnadzor and be an incentive for enterprises to improve the quality, efficiency, and effectiveness of the production control system.


Author(s):  
Milan Štrbo ◽  
Pavol Tanuška ◽  
Augustín Gese

Abstract The aim of this article is the proposal of process of the safety analysis for complex dynamic systems in process of the proposal of control system for safety-critical processes. The method of safety analysis depends on various safety-critical states of system which are system are controlled by models. We propose to use the method SQMD for modeling these states. This method combines qualitative and quantitative methods of modeling states and takes advantage of both methods. The model of the proposal is shown in the diagram. The article includes detailed description of the tasks for each step of analysis.


Sign in / Sign up

Export Citation Format

Share Document